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All known optical materials have an index of refraction of order unity. Despite the tremendous
implications that an ultrahigh index material could have for optical technologies, little research has
been done on why the refractive index of materials is universally small, and whether this observation
is truly fundamental. Here, we describe significant insights that can be made, by posing and
quantitatively analyzing a slightly different problem – what is the largest refractive index that
one might expect from an ordered arrangement (crystal) of atoms, as a function of atomic density.
At dilute densities, this problem falls into the realm of quantum optics, where atoms do not interact
with one another except via the scattering of light. On the other hand, when the lattice constant
d ∼ a0 becomes comparable to the Bohr radius, the electronic orbitals centered on different nuclei
begin to overlap and strongly interact, giving rise to quantum chemistry. We present a minimal
model that allows for a unifying theory of index spanning the quantum optics and quantum chemistry
regimes. A key aspect of this theory is its treatment of multiple light scattering, which can be highly
non-perturbative over a large density range, and which is the reason that conventional theories to
predict the refractive index break down. In the quantum optics regime, we show that ideal light-
matter interactions can have a single-mode nature, which allows for a purely real refractive index
that grows with density as (N/V )1/3. At the onset of quantum chemistry, we show how two physical
mechanisms – excited electron tunneling dynamics and the buildup of ground-state density-density
correlations – play dominant roles in opening up inelastic or spatial multi-mode light scattering
processes, which ultimately reduce the index back to order unity while simultaneously introducing
absorption. Around the onset of chemistry, our theory predicts that ultrahigh index (n ∼ 30),
low-loss materials could in principle be allowed by the laws of nature. This work could inspire new
efforts to design and realize materials with ultrahigh index, and also stimulate the investigation of
other exotic physics driven by the interplay of collective optical phenomena, multiple scattering,
and quantum chemistry.
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I. INTRODUCTION

Ultrahigh index, low-loss optical materials at telecom or visible frequencies would have potentially game-changing
implications for optical technologies and light-based applications. Notably, the reduction in the optical wavelength λ =
λ0/n compared to the free-space value λ0 could lead to unprecedented opportunities associated with field confinement
and focusing. For example, nanoscale resonators and waveguides could lead to strong optical nonlinear interactions
at the single-photon level, compact metasurfaces [1–4] such as for wavefront shaping, and optical circuitry with the
same physical footprint as electronic transistors. The reduction in wavelength could also be useful for nanoscale
microscopy and optical lithography [5]. Despite these potential implications, known optical materials at telecom and
visible wavelengths ubiquitously have an index of order unity, and limited research has been done on why such a
limitation might arise [6, 7]. For example, using Kramers-Kronig relations and a sum rule, one recent work places
an elegant bound between the maximum index a transparent material can have and the bandwidth over which it can
be sustained [7], but does not directly address how large the index can be. Here, we introduce a minimal physical
model that elucidates how large we might expect the index to become, under ideal circumstances, and the fundamental
mechanisms that limit its indefinite growth. Our analysis is limited to optical frequencies, with the specific assumption
that only the electronic response contributes to the refractive index.

As a starting point for a bottom-up model, we observe that the basic building block of a material – individual
atoms – can have an extraordinarily large and universal response to light when isolated. In particular, it is well-
known that an isolated atom can exhibit a scattering cross section of ∼ λ2

0 when illuminated by photons resonant
with an electronic transition of wavelength λ0. Given that a typical transition wavelength λ0 ∼ 1 µm is much larger
than the typical spacing between atoms in a solid (as characterized by the Bohr radius, a0 ∼ 0.05 nm), one might
wonder why the large atomic density in a solid does not provide a strongly multiplicative response to light. Indeed,
such a response is predicted by conventional macroscopic theories of the refractive index, such as the Drude-Lorentz,
Maxwell-Bloch, or Lorentz-Lorenz models. Specifically, these theories state that the macroscopic index should depend
on the product of the polarizability of a single atom and the particle density as n(ω) ∼

√
α(ω)N/V (the Lorentz-

Lorenz equation is different, but the conclusion that the maximum index can scale as (N/V )1/2 is the same [8]). The
large near-resonant polarizability of an individual atom then leads to a predicted maximum index of n ∼ 105 at solid
densities, as illustrated by the orange curve in Fig. 1. This is hard to reconcile with empirical observations.

The main goal of this work is to elucidate what the unifying curve in Fig. 1 should look like, i.e. what maximum
index might be achievable as a function of atomic density, particularly when the atoms form a perfect crystal (blue
curve). Our theoretical analysis aims to connect two quite different regimes. In particular, at low densities (which
we term the “quantum optics” regime), the atomic nuclei are too far separated for electrons centered on different
nuclei to directly interact. Then, the atoms only interact via electromagnetic fields, and the index should solely be
a function of the lattice constant and the single-atom polarizability. In the “quantum chemistry” regime, the atomic
densities are sufficiently high that electronic orbitals on neighboring nuclei begin to overlap, in principle giving rise to
a wealth of new phenomena associated with chemical interactions or solid-state physics, and ultimately resulting in the
formation of a solid. At very dilute densities in the quantum optics regime, one expects that conventional macroscopic
theories of index hold. Likewise, empirically we know that computational quantum chemistry can predict the optical
properties of real solids with reasonable accuracy. In these limits, the multiple scattering of light is a weak effect.
The challenge of constructing a unifying curve in Fig. 1 lies in a vast intermediate scale of densities, starting from a
minimum density of N/V ∼ 1/λ3

0 and spanning through part of the quantum chemistry regime. In this range, the
spatial extent of the scattering cross section of an (isolated) atom can far exceed the inter-atomic distance. Then,
multiple scattering of light can become very strong, and in fact causes the breakdown of conventional theories of
refractive index. Our model treats multiple scattering non-perturbatively, including in the presence of the onset of
quantum chemistry. For context, we note that a complementary part of this puzzle was addressed in Ref. [8] (also see
previous historical work [9–12]). In particular, for a completely disordered medium in the quantum optics regime, it
was found that the maximum index saturates at n ≈ 1.7 regardless of how high the atomic density becomes (solid
green curve of Fig. 1). In Ref. [8], strong disorder renormalization group theory was used to treat multiple scattering
non-perturbatively and identify the physical mechanism (strong, random-strength near-field interactions between a
given atom and its single nearest neighbor) by which the refractive index saturates to a maximum value.

We now summarize the scope and main results of the paper. In Sec. II, we analyze the refractive index of an atomic
crystal in the quantum optics limit. We first review a result that has gained theoretical [13, 14] and experimental [15]
interest in recent years, that a single two-dimensional (2D) array of atoms can provide a large, lossless and cooperatively
enhanced response to light near resonance, as characterized by large reflectance and large phase shift in transmission.
By considering a three-dimensional (3D) crystal as a sequence of 2D arrays separated by lattice constant dz, we
then show that the 2D properties directly translate into a refractive index near resonance that can be purely real,
and which scales as nmax ∝ λ0/dz. The key property enabling this behavior is the single-mode nature of the light-
matter interaction, both in the 2D and 3D arrays, where light excites only a single collective mode of the atoms, and
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FIG. 1. Schematic plot of the maximum attainable real part of the refractive index versus density of atoms N/V (in units
of the wavelength λ0 of an atomic transition). Conventional theories predict a maximum index that scales with density as

n ∼ (Nλ3
0/V )1/2 (orange curve) near an atomic resonance. In the “quantum optics” regime, atoms are sufficiently far enough

part that they can be considered isolated objects, which only interact via the electromagnetic field. For sufficiently high
densities, one enters the “quantum chemistry” regime where the overlap of electronic orbitals between different atoms becomes
non-negligible and chemical interactions occur. In a vast intermediate regime of densities, ranging from Nλ3

0/V ∼ 1 through
the onset of quantum chemistry, a non-perturbative treatment of multiple scattering of light is needed to correctly predict the
index. For a disordered atomic medium in the quantum optics regime, it was found that the maximum index is limited to
n ≈ 1.7 (green curve) [8]. In this work, we show that a perfect crystal exhibits a purely real index scaling as n ∼ (Nλ3

0/V )1/3

in the quantum optics regime, and the maximum attainable value is limited by effects arising from quantum chemistry (blue
curve).

this collective mode only re-radiates light elastically back in the same direction, to produce a maximal and lossless
response.

We then briefly introduce the model to incorporate quantum chemistry effects. It is well-known that the many-
electron problem of computational quantum chemistry for real solids is a challenging and likely intractable problem to
solve exactly. State-of-the-art computational techniques, like modern density functional theory, are largely based upon
sophisticated approximation techniques. Here, we favor an approach that is less dependent on such approximations.
In particular, we limit our theory to the onset of quantum chemistry, or an expansion around a large lattice constant
compared to the Bohr radius, d/a0. Then, quantum chemistry can be treated perturbatively, while multiple scattering
can still be treated non-perturbatively. This large d/a0 expansion of quantum chemistry and the resulting minimal
model is summarized in Sec. III, while a more detailed discussion and derivation is provided in Sec. IV.

In Sec. V, we incorporate the results of quantum chemistry into multiple scattering. Perhaps not surprisingly,
effects associated with chemistry can break the single-mode nature of atom-light interactions found in the quantum
optics regime, either by allowing for spatial multi-mode response or inelastic light scattering. Considering the simplest
model of a lattice of hydrogen atoms, we show that a combination of the emergence of quantum magnetism, electronic
density-density correlations, and tunneling dynamics of photo-excited electrons are the primary mechanisms for multi-
mode and inelastic scattering at large d/a0. We quantify how these effects lead to a maximum allowed real part
of the refractive index, and the growth of the imaginary part associated with absorption. Our model suggests
that an ultrahigh index material of n ∼ 30 with low losses is not fundamentally forbidden by the laws of nature.
Although our quantitative model deals with hydrogen atoms, we also discuss possible realistic routes toward ultrahigh-
index materials, such as high-density arrays of solid-state quantum emitters or van der Waals heterostructures, and
qualitatively show that the ultrahigh index is robust to some degree of additional imperfections (e.g., implementation-
dependent inhomogeneities, or additional inelastic mechanisms). In Sec. VI, we provide an outlook of future interesting
research questions to explore.
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II. REFRACTIVE INDEX: THE QUANTUM OPTICS LIMIT

A. Formalism

In this section, we derive the refractive index of a perfect atomic lattice in the quantum optics limit, where quantum
chemistry interactions between atoms are ignored and each atom is seen as a point dipole from the standpoint of its
optical properties. Specifically, we consider the relevant levels of the atom to consist of an electronic ground state and
first excited state, which are connected by an electric dipole transition of frequency ω0 and corresponding wavevector
k0 = ω0/c and wavelength λ0 = 2π/k0. The atoms can also be driven by a weak coherent input field of frequency ωL,
with a polarization x̂ that aligns with the dipole matrix element p0 = p0x̂ of the atomic transition. The excited state
can only decay by emitting a photon and returning to the ground state, which occurs at a rate Γ0 = k3

0p
2
0/3πε0h̄ for

an isolated atom.
Although our conclusions in this section will be completely general to any atom with the properties specified above,

here we adopt a second-quantized notation consistent with our later model including quantum chemistry, when we
consider a hydrogen atom whose ground and excited states are then the 1s and 2px orbitals. In a rotating frame
relative to the driving field and in the long-wavelength limit, the Hamiltonian describing the atom-light interactions
is given by [16–18]

HQO = H0 +Hdip−dip +Hdrive

= −
∑
iσ

δb†piσbpiσ − Γ0

∑
ijσσ′

Gij(b
†
piσbsiσ)(b†sjσ′bpjσ′)−

∑
iσ

[
Ωib
†
piσbsiσ + h.c.

]
. (1)

Here, we have defined the detuning δ = ωL − ω0, the Rabi frequency Ωi = p0 · E in(Ri)/h̄ associated with the
coherent input field E in(r), and the fermionic operator bαiσ that annihilates an electron of orbital α and spin σ on
atom i, whose nucleus is at position Ri. The dipole-dipole interaction Hdip−dip describes the electronic excitation

(b†piσbsiσ) of an atom from its s to its p-orbital at site i, and the de-excitation (b†sjσ′bpjσ′) of another at site j. This
captures electromagnetic field mediated interactions once the photons are integrated out within the Born-Markov
approximation, with Gij = x̂ · G(Ri − Rj , ω0) · x̂ being proportional to the electromagnetic Green’s function at
frequency ω0 (see below). The positive-frequency component of the electric field operator within the same limit is [18]

E(r) = Ein(r) +
k3

0

3πε0

∑
iσ

G(r−Ri, ω0) · p0 b
†
siσbpiσ, (2)

which formally expresses the total field at any spatial point, in terms of the input and the field scattered by the atoms.
Here, we use the notation E(r) to denote a classical field (i.e. coherent state) value, while E(r) denotes a quantum
field operator. At this level of discussion, HQO and the relevant Hilbert space can just as well be written in terms of
pseudospin-1/2 operators to describe the two-level atoms, as common in quantum optics literature [16–18]. We avoid
that here, to prevent confusion with the actual electronic spins σ and to more naturally extend to the inclusion of
quantum chemistry.

The function G(r − r′, ω0) is a dimensionless tensor describing the field at position r radiated by a point dipole
at position r′ oscillating at frequency ω0. Its projection onto the x̂ direction (giving the x̂ component of the field
radiated by a dipole oriented along x̂) is explicitly given by

x̂ ·G(r, ω0) · x̂ =
3

4
eik0|r|

[(
1

k0|r|
+

i

(k0|r|)2
− 1

(k0|r|)3

)
+

(
− 1

k0|r|
− 3i

(k0|r|)2
+

3

(k0|r|)3

)
(x̂ · r)2

|r|2

]
, (3)

Since Gij is complex, the Hamiltonian Hdip−dip is non-Hermitian. Its Hermitian and non-Hermitian components
describe coherent energy exchange between atoms, and collective spontaneous emission arising from interference of
light emission, respectively. To the extent that Eqs. (1) and (2) can be solved exactly, they fully incorporate the effects
of non-perturbative multiple scattering of light and wave interference in emission. Derivations of these equations can
be found, for example, in Refs. [16–18], and also in Sec. IV in a manner consistent with our quantum chemistry
discussion.

B. Optical response of a 2D array

While one can in principle directly study the optical response of a 3D lattice [19, 20], one can arrive at a better
physical understanding of the refractive index by first considering a single, 2D square array of lattice constant d,
located in the z = 0 plane. This brief review of a 2D array closely follows the discussions of Refs. [13, 14].
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FIG. 2. Reflection and transmission coefficients of a 2D atomic array. a) Spectrum of reflectance (blue) and trans-
mittance (green) as a function of detuning relative to the collective resonance frequency of the array δ − ω(0), and in units of
the collective linewidth Γ(0). b) Spectrum of transmission phase, arg t(δ).

We write the total wave function |Ψ(t)〉 = |ψ2D(t)〉 ⊗ |σ〉 in terms of the orbital |ψ2D(t)〉 and electronic spin |σ〉
wave functions, the latter of which is time independent and irrelevant in the quantum optics limit, as atom-light
interactions and thus HQO are decoupled from spin. In the single-excitation limit (containing exactly one p-orbital),
the discrete translational symmetry implies that all eigenstates of Hdip−dip of the 2D array are Bloch modes with

corresponding Bloch wavevector kxy, |Ekxy 〉 = N−1/2
∑
i e
ikxy·Rib†pibsi|G〉. The ground state consists of all atoms in

the s orbitals, |G〉 = Πib
†
si|vac〉. Here, we have suppressed the spin index given its decoupling from dynamics, and

N →∞ represents the number of atoms in the 2D array. We write the complex eigenvalues of the Bloch modes in the
form ω(kxy)−iΓ(kxy)/2 = −Γ0

∑
i,j Gije

ikxy·Rij , which can be calculated by discrete Fourier transform of the Green’s

function [13, 14]. The dispersion relation ω(kxy) represents the energy shift of each Bloch mode relative to the bare
atomic resonance ω0, due to dipole-dipole interactions, and can be evaluated numerically. The collective emission rate
admits the analytic solution Γ(kxy) = [3λ2

0Γ0/(4πd
2)]Θ(k0 − |kxy|)(k2

0 − k2
x)/(k0

√
k2

0 − |kxy|2) (where Θ(k0 − |kxy|)
is the Heaviside step function) when the lattice constant d < λ0/2, and is modified from the single-atom value due
to interference in the emitted light from different atoms [14]. For a collective mode with uniform phase (kxy = 0),
one has Γ(0) = 3λ2

0Γ0/4πd
2. In particular, for small lattice constants, the rate is significantly enhanced relative to

Γ0 by an amount ∝ (λ0/d)2 due to strong constructive interference. On the other hand, when |kxy| > k0, the modes
become perfectly subradiant, Γ(kxy) = 0, due to an impedance mismatch between the wavevector of the excitation
and the dispersion relation of propagating light.

We now consider driving with a plane wave at normal incidence to the 2D array (with longitudinal wavevector
kz = k0 and perpendicular wavevector kxy = 0), whose spatially uniform Rabi frequency Ωi = Ω0 is sufficiently weak
that dynamics can be restricted to the ground state and single-excitation manifold. The discrete symmetry imposes
that this field will only couple to the Bloch mode |Ekxy=0〉, with the time-dependent wave function restricted to the
form |ψ2D(t)〉 = cG(t)|G〉 + cE(t)|Ekxy=0〉. The wave function approach to the non-Hermitian Hamiltonian (1), or
more properly the full master equation, is valid within the quantum jump formalism of open systems. Furthermore,
under weak driving, quantum jumps can be neglected and cG(t) ≈ 1 up to order (Ω0/Γ0)2 [21]. The Schrodinger
equation then leads to a steady-state amplitude of the excited state whose dependence on detuning δ goes as

cE(δ) =
Ω0

−δ + ω(0)− iΓ(0)/2
. (4)

We now derive the expectation value E(r) = 〈E(r)〉 of the total field from Eq. (2). Given the periodic nature of the
array and that only the kxy = 0 Bloch mode is excited, the total field only contains transverse momentum components
given by integer multiples (m,n) of the reciprocal lattice vectors, gmn = (2π/d)(mx̂+ nŷ). Specifically, we find

E(r) = E in(r) + E0

(
i
Γ(0)

2

∑
m,n

k2
0 − (gmn · x̂)2

k0k
(m,n)
z

eigmn·r⊥+ik(m,n)
z |z|

)
cE(δ)

Ω0
, (5)

where k
(m,n)
z =

√
k2

0 − |gmn|2, and where E in(r) = E0eik0zx̂. Note that for d < λ0, k
(m,n)
z is imaginary except for
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FIG. 3. Optical band structure along ẑ of a 3D lattice. Re-scaled dispersion relation (d/λ0)3J(kz)/Γ0 for Bloch waves
along z with Bloch wavevector kz, for several different lattice constants d and dz indicated by the legend. The non-invertibility
of the band for some values of d, dz can be clearly seen in the inset.

m = n = 0. In other words, only transmission and reflection at normal incidence are radiation waves, while any other
(m,n) 6= (0, 0) correspond to evanescent diffraction orders (with the sign of Im kz chosen such that the field decays
away from the array). In the far field limit (large |z|), one thus has

E(r⊥, |z| � 1/k0) ≈ E in(r)

[
1 + i

Γ(0)

2

cE(δ)

Ω0
Θ(z)

]
+ E∗in(r)

[
i
Γ(0)

2

cE(δ)

Ω0
Θ(−z)

]
, (6)

Using the steady-state amplitude in Eq. (4), we identify the reflection and transmission coefficients r(δ) = iΓ(0)/[−2δ+
2ω(0) − iΓ(0)] and t(δ) = 1 + r(δ). Note in particular that the array is perfectly reflecting when light is resonant
with the Bloch mode, δ = ω(0), and generally that the system is lossless with |r|2 + |t|2 = 1 [13, 14]. These
properties reflect the single-mode nature of the light-matter interaction for this system, where the light excites only
a single collective eigenmode |Ekxy=0〉, and this collective mode only re-radiates light elastically back in the same
kxy = 0 direction (either forward or backward). In Fig. 2, we plot the reflectance and transmittance spectra and the
transmission phase. Notably, near resonance, the transmitted light can undergo a significant phase shift of up to π/2.

C. Refractive index

We now consider a 3D array, with the lattice constant dz between 2D layers allowed to be different than the
intra-layer lattice constant d. Naively, if each 2D layer can contribute a large phase shift to transmitted light, then
one expects a large, perfectly real index scaling like n ∼ λ0/dz. This naive argument does not account for multiple
scattering between planes or evanescent fields, but we now present an exact calculation showing that this scaling
holds.

As before, we restrict ourselves to the weak driving limit at normal incidence. Thus, only the collective mode
|Ekxy=0〉 of each 2D array can be excited, leading to a total wave function |ψ3D(t)〉 = cG(t)|G〉+

∑
j c
j
E(t)|Ekxy=0,j〉,

where cG(t) ≈ 1 and |Ekxy=0,j〉 is the collective mode associated with the 2D plane at position zj . Within this
manifold, the dynamics under HQO of Eq. (1) is equivalent to a 1D problem, characterized by the matrix elements
H1D

dip−dip,ij = 〈Ekxy=0,i|Hdip−dip|Ekxy=0,j〉, which explicitly read

H1D
dip−dip,ij =


ω(0)− i

2
Γ (0) i = j,

−iΓ(0)

2

∑
m,n

k2
0 − (gmn · x̂)2

k0k
(m,n)
z

eik
(m,n)
z |zi−zj | i 6= j.

(7)

Comparing with Eq. (5), the off-diagonal elements i 6= j between different planes can equivalently be interpreted as
the Rabi frequency associated with the field scattered by one plane, as experienced by atoms in another plane.
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Diagonalizing this matrix H1D
dip−dip then gives the optical band structure of the array at normal incidence, with

dispersion relation

J(kz) = ω(0) +
Γ(0)

2

[
sin(k0dz)

cos(kzdz)− cos(k0dz)
+ Jev(kz)

]
, (8)

where |kz| ≤ π/dz is restricted to the first Brillouin zone. Recall that we are in a rotating frame, and J(kz) is thus
the frequency relative to the bare atomic resonance frequency ω0. Also, we will always be in a regime where the shift
is small relative to the bare frequency |J(kz)|/ω0 � 1. Here, Jev(kz) is the contribution coming from the evanescent
fields of each plane, and is found to be

Jev(kz) = −
∑

(m,n) 6=(0,0)

(gmn · x̂/k0)2 − 1√
|gmn/k0|2 − 1

1 +

sinh

(
k0dz

√
|gmn/k0|2 − 1

)
cos (kzdz)− cosh

(
k0dz

√
|gmn/k0|2 − 1

)
 . (9)

Although H1D
dip−dip itself is non-Hermitian, the dispersion relation is purely real, as a result of the lossless nature of

the individual planes.
A typical band structure is illustrated in Fig. 3 for several different values of d/λ0 and dz/d. As long as J(kz) is

invertible (a single value of |kz| is associated to each value of J), then the index is well-defined and J(kz) can be used
to directly infer its value. In particular, we consider the band edge kz = π/dz and use the fact that |J(kz)|/ω0 � 1.
Then, the maximum index, describing the reduction of the effective wavelength of light compared to free space at the
same frequency, is (in the relevant regime of d < λ0/2)

nmax ≈
λ0

2dz
, (10)

and grows indefinitely with shrinking lattice constant. In reality, the band structure is not always invertible, due to
the interfering mechanisms of energy transfer between planes via radiation and evanescent waves. For fixed dz/d,
non-invertibility will arise for sufficiently small d, while for fixed d, increasing dz/d will eventually lead to invertibility.
This is illustrated in Fig. 3, for example, as the choices d/λ0 = 1/10, dz/d = 1 and d/λ0 = 1/60, dz/d = 1.6 are
invertible, while d/λ0 = 1/60, dz/d = 1 is not. The condition for invertibility is derived in greater detail in Appendix
A. In what follows, we will fix dz/d = 2.5, where the contribution of the evanescent coupling to the dispersion relation
is negligible |Jev(kz)| � |J(kz)| down to d ≈ λ0/360 (corresponding to d ≈ 6a0 for hydrogen atoms) and the band
remains invertible, by which point quantum chemistry has already become significant.

When the band is non-invertible, the index is not well-defined. In particular, incident light can excite different
values of kz, and “split” into components propagating at different phase velocities. In the presence of additional
dissipation, such as arising from quantum chemistry, light strongly favors exciting the lower value of kz. This leads
to a practically observed index that can be much smaller than the prediction of Eq. (10).

We conclude this subsection by noting that the idea of using resonant scatterers to potentially realize high-index
materials has been discussed before, typically in the context of small metallic nanoparticles or metal composites with
plasmonic resonances [6, 7]. Compared to such works, two key differences of our work are that first, we consider
isolated atoms as building blocks that are completely lossless and have a large scattering cross section decoupled from
their physical size, and that second, by bringing the atoms progressively closer until quantum chemistry turns on, we
can better address the fundamental limits of refractive index of a “real” material.

D. Collective versus distinguishable response

The collective response of a uniformly excited array differs remarkably from the response of a single, distinguishable
driven atom. Concretely, we now consider an infinite 2D array, but where a weak input field with detuning δ selectively
drives just a single atom located at r = rh, i.e. taking Ωj = Ωhδjh in Eq. (1), as illustrated in Fig. 4a. Although
this scenario might not appear particularly physical, it allows us to derive a response function that will be directly
relevant for our quantum chemistry discussions later. In particular, we will see in Sec. V that it characterizes the
optical response of photo-excited electrons that tunnel to neighboring nuclei.

We consider a wave function |ψ2D〉 = cG|G〉 +
∑
j c̃jb

†
pjbsj |G〉, where other atoms j 6= h can still be excited via

dipole-dipole interactions with the driven atom. Our goal is to solve for the steady-state atomic amplitudes c̃j(δ)
under Eq. (1), assuming that cG ≈ 1. This can be efficiently done by calculating the free propagator inside the 2D
atomic array, which describes the spread of the excitation mediated by dipole-dipole interactions. In the rotating
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FIG. 4. a) A single, distinguishable atom at rh in a 2D array is selectively driven by a weak input field of Rabi frequency
Ωh (blue arrow) and detuning δ. Dipole-dipole interactions between atoms allow other atoms j in the array to become excited
by an amount proportional to the susceptibility χ(rj−rh, δ). The rate of such a process is given by Γd(δ) = −2Im [Ωh/c̃h(δ)] =
−2Im 1/χ(0, δ). b) Dispersion relation ω(kxy) of a 2D atomic array, within the first Brillouin zone. The lattice constant is
chosen as d = λ0/20, while the black, dashed line and the black point at the center represent the isoenergetic modes with
ω(kxy) = ω(0). The modes with |kxy| < k0 that radiate into free space are inside the boundary given by the dotted black
circle.

frame, such a propagator is given by the operator Gχ(δ) = −(H0 +Hdip−dip)−1, which can be explicitly computed by
decomposing the single-excitation manifold into the Bloch modes |Ekxy 〉 that diagonalize it. One obtains

Gχ(δ) = −N
(
d

2π

)2 ∫
BZ

dkxy

∣∣Ekxy

〉
〈Ekxy |

−δ + ω(kxy)− iΓ(kxy)/2
= −

∑
jhσσ′

χ(rj − rh, δ) (b†pjσbsjσ)(b†shσ′bphσ′), (11)

where we have defined the susceptibility

χ(rj − rh, δ) =

(
d

2π

)2 ∫
BZ

dkxy
e−ikxy·(rj−rh)

−δ + ω(kxy)− iΓ(kxy)/2
. (12)

The physical meaning of these operators can be seen by examining the first-order expansion of the Dyson equation,
which leads to the weak-driving steady state |ψ2D〉 = (1 +Gχ(δ)Hdrive) |G〉. For the case of a selectively driven atom,

one has Hdrive = −Ωh
∑
σ

(
b†phσbshσ + h.c.

)
, which leads to the coefficients

c̃j(δ) = χ(rj − rh, δ) Ωh. (13)

Some of the energy provided by the drive will naturally be radiated into free space, through the excitation of
collective modes |kxy| ≤ k0 with non-zero radiative decay rate Γ(kxy). However, at small lattice constants d � λ0

this channel is negligible compared to the amount of energy that has gone into exciting non-radiative modes with
|kxy| > k0, which subsequently propagate outward from rh along the array itself. To illustrate this, we first plot
ω(kxy) within the first Brillouin zone |kx|, |ky| < π/d in Fig. 4b for a lattice constant d = λ0/20 that is small
compared to the resonant wavelength. For d � λ0, the first Brillouin zone is dominated by the region outside the
light cone |kxy| > k0. Restricting the integration in Eq. (12) to this dominant region, one has Γ(kxy) = 0, while
the energy scale is dictated by the near-field (∼ 1/r3) component of the Green’s function, leading to the functional
form ω(kxy) ∼ Γ0(λ0/d)3f(kxyd/π). Considering that the region of integration scales as dkxy = (π/d)2d(kxyd/π),
one then obtains the final scaling χ(rj − rh, δ) ∼ d3/(Γ0λ

3
0). We note that χ(0, δ) can have an imaginary component

describing work done by the drive on atom h. This occurs if there exists an isoenergy contour where ω(kxy) = δ (see
the dashed black curve in Fig. 4b for the contour ω(kxy) = ω(0)), allowing the drive to resonantly excite a continuum
of non-radiative modes. Specifically, the quantity Γd(δ) = −2Im [Ωh/c̃h(δ)] = −2Im 1/χ(0, δ) quantifies the rate at
which energy is irradiated into the atomic array via the selectively driven atom (as pictorially described by the wavy
arrows in Fig. 4a). In Appendix B, we describe our numerical procedure to calculate χ, which demonstrates the
scaling mentioned above.

For the quantum chemistry problem, it will also be helpful to understand the problem of a 2D array illuminated
by a normally incident plane wave of Rabi frequency Ω0, but with a single missing atom at site r = rh. In Sec. V, we
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will see that this classical calculation roughly equates with the optical response arising from electronic density-density
correlations. Working in the usual weak driving limit, it is convenient to write the steady-state, single-excitation
amplitude of atom j as cj(δ) = cE(δ) + c̃j(δ). Here, cE(δ) is the solution for a defect-free, uniformly driven array
given in Eq. (4), while c̃j(δ) is the solution for an array with a single driven atom at rh given in Eq. (13). This
expression is valid provided that Ωh = −cE(δ)/χ(0, δ) is chosen such that ch(δ) = cE(δ) + c̃h(δ) = 0. Physically,
this states that the overall solution can be expressed as the coherent sum of the solution of two separate problems,
of a uniformly driven perfect array and a perfect array with a single driven atom. Enforcing that ch(δ) = 0 via a
proper choice of the single-atom driving amplitude Ωh says that the atom at rh has no excitation amplitude, which
is equivalent to having no atom at rh to begin with.

To quantify the effect of a missing atom, we can calculate the scattering cross-section associated with a hole at
the driving frequency δ = ω(0). In general, given a set of atomic dipoles illuminated by a field Ωj and producing
coefficients cj , the total cross section is given by the optical theorem [22, 23] to be σ = (σ0/2)(Γ0/Ω

2
0)Im

∑
j Ωjcj ,

where σ0 = 3λ2
0/(2π) is the resonant cross section of a single atom in vacuum. It is convenient to normalize this by

the cross-section of a single atom in the perfect array at the same frequency. Defining this ratio as Nh, we find that

Nh =
Im Ωhc̃h
Im Ω0cE

=
Γd(δ = ω(0))

Γ(0)
∼ λ0

d
. (14)

Nh can be interpreted as the effective number of atoms affected by the single-site hole, or equivalently the size of the
“effective” hole as seen by resonant, incident light. In particular, due to the λ0/d scaling, for small d the effective
hole size can be much bigger than the unit cell size d2, and Nh � 1.

The total field produced by a plane wave interacting with an array with a single hole can be derived from Eq. (2)
and the excitation amplitudes cj(δ). We can also generalize to the case of an array with a small fraction Ph � 1
of defects randomly removed, if we assume that the defects are sufficiently far enough apart that their emission is
uncorrelated. This results in a generalized transmission coefficient of (compare with Eq. (6)) of

t(δ) ≈ 1 +
iΓ(0)/2

−δ + ω(0)− iΓ(0)/2 + PhΣh(δ)
, (15)

and a reflection coefficient r(δ) = t(δ) − 1. We see that the effect of the holes can be incorporated into a complex
“self-energy” Σh(δ) = 1/χ(0, δ), describing an effective energy shift and additional decay rate experienced by the
collective mode |Ekxy=0〉. In particular, this additional decay implies that |r(δ)|2 + |t(δ)|2 < 1, due to the holes
scattering light into other directions kxy 6= 0.

III. QUANTUM CHEMISTRY MODEL

A. Introduction to model

The potentially large and purely real refractive index obtained in the quantum optics limit, nmax ≈ λ0/2dz, is
associated with the single-mode nature of the light-matter interaction. Intuitively, the new degrees of freedom and
dynamics opened up by quantum chemistry can break the single-mode nature, creating channels for inelastic or spatial
multimode scattering and subsequently reducing the maximum index.

As mentioned in the introduction, our primary goal here is to understand the behavior of the refractive index
at densities corresponding to the onset of quantum chemistry, when the lattice constant is still large compared to
the Bohr radius, d � a0. We favor this approach because chemistry can be considered weak and can thus be
treated perturbatively, which allows one to avoid the well-known theoretical and computational challenges of quantum
chemistry of solids. Studying this regime also enables one to continue to treat multiple scattering non-perturbatively,
which is key to understanding the limits of refractive index.

Within the weak chemistry limit, one still has to choose the individual atomic building block of the lattice. We take
hydrogen atoms, which have the advantage that the single hydrogen atom is an exactly solvable quantum mechanics
problem. One could instead conceivably take an atom that corresponds to a more realistic optical solid (e.g., silicon),
with the price that the single atom is already a complicated many-electron problem, and density functional theory or
other techniques would have to be applied to justifiably and quantitatively reduce to a more minimal model (such as
only involving the valence electrons). Despite the specificity of taking hydrogen, we will see that the main mechanisms
that limit the refractive index involve the emergence of quantum magnetism, chemistry-induced electronic density-
density correlations, and tunneling dynamics of photo-excited electrons. These are rather general features in materials,
which plausibly give our model broader qualitative validity. Finally, in our model, we assume that the nuclei can be
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magically “fixed” to realize any lattice constant, while more realistic routes toward an ultrahigh index material are
discussed in Sec. V C.

To be specific, we consider a rectangular lattice with lattice constant d in the transverse plane and dz = 2.5d along
the direction of light propagation, avoiding the non-invertible optical band structure discussed in Sec. II C. For an
isolated hydrogen atom, the transition wavelength from the 1s to 2p level is λ0 ≈ 121 nm and the corresponding
spontaneous emission rate is Γ0 ≈ 2π× 100 MHz. Of course, neither hydrogen nor any other material is energetically
stable for arbitrary values of d, dz, but again we assume that the nuclei can be fixed for this thought experiment.

Formally, the Hamiltonian describing the quantum chemistry and the light-matter interactions associated with the
hydrogen lattice is given by

H = Hel +Hel−el +Hph +Hph−el +Hdrive . (16)

Here, Hel =
∑
i hi where

hi =
p2
i

2m
−
∑
j

VC(ri −Rj) (17)

describes the kinetic energy of electron i and its Coulomb interaction VC(r) = q2/4πε0|r| with the positive nuclei fixed
at positions Rj . The sums run over 1 ≤ i, j ≤ N , where for hydrogen N corresponds both to the number of nuclear
sites and the number of electrons in the system. The second term in Eq. (16) captures the electrostatic interaction
between the electrons and takes the form Hel−el = (1/2)

∑
i,j 6=i VC(ri − rj). The third term describes free photons

Hph =
∑

k h̄ωka
†
kak with dispersion relation ωk = c|k|, and the fourth their interaction with matter, which in the

Coulomb gauge reads

Hph−el = − q

m

∑
i

A(ri) · pi +
q2

2m

∑
i

A(ri)
2. (18)

Here, A(r) denotes the vector potential of the electromagnetic field which admits the mode decomposition

A(r) =
∑
kα

êαk

√
h̄

2ωkε0V

(
ake

ik·r + h.c.
)
, (19)

where V is the quantization volume, and êαk with α ∈ {1, 2} denote the transverse polarization unit vectors obeying
êαk · k = 0. The final term in Eq. (16) is associated with the (classical) optical driving field.

We bring the matter part of the Hamiltonian into second quantized form by associating a localized, orthonormal set
of electronic Wannier states |φiνσ〉 centered around each site i, where σ denotes the spin state and ν the band index.

The associated fermionic creation operators b†νiσ were already introduced in Eq. (1). The Wannier functions at different
sites are related by translational symmetry, |φiνσ〉 = |φν(r−Ri)〉|σ〉, where the notation |φν(r−Ri)〉 indicates that
the projection of this state onto a position basis yields a wavefunction φν(r−Ri) with φν(r) exponentially localized
in r. In the non-interacting limit of large d/a0 → ∞, the form of the Wannier orbitals φν(r) approaches that of the
atomic orbitals. In terms of the Wannier states and operators,

Hel =
∑
ij,ν,σ

〈φν(r−Ri)|h|φν(r−Rj)〉b†νiσbνjσ

Hel−el =
1

2

∑
ijkl,µµ′νν′,σσ′

〈φµ(r−Ri)φµ′(r
′ −Rj)|VC(r− r′)|φν′(r′ −Rk)φν(r−Rl)〉b†µiσb

†
µ′jσ′bν′kσ′bνlσ

Hph−el =
∑

ij,νν′,σ

〈φν(r−Ri)|
(
q2

2m
A(r)2 − q

m
A(r) · p

)
|φν′(r−Rj)〉 b†νiσbν′jσ. (20)

Above, we note that Hel is block diagonal in the band index ν.

B. Effective 2D Hamiltonian

1. Simplifying assumptions

While the Hamiltonian of Eq. (16) is completely general, we now introduce simplifications we can make in the limit
dz = 2.5d and d� a0:
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• For these lattice constants, we can assume that quantum chemistry first turns on within individual 2D layers,
while chemical interactions between layers (separated by dz) remain negligible.

• Being interested in near-resonant light interactions, we take the long-wavelength limit. Physically, we assume
that the field interacting with each atom does not probe the spatial extent of the associated electronic orbital
around the nucleus, which implies the approximate eigenvalue equation r |φν(r−Ri)〉 ≈ Ri |φν(r−Ri)〉 as far
as light is concerned. In particular, the interaction term Hph−el in Eq. (20) takes the approximate form

Hph−el ≈ −
q

m

∑
ij,νν′,σ

A(Ri) · 〈φν(r−Ri)|p|φν′(r−Rj)〉 b†νiσbν′jσ (21)

where we have dropped the term quadratic in A(Ri) that no longer couples to the electronic states. We further
work in the regime of weak driving, which is sufficient to probe the linear refractive index, and restrict our
calculations to the two lowest electronic bands (those reducing to the 1s and 2p hydrogen levels in the isolated
atom limit).

• In the large d/a0 limit, the Wannier orbitals have an exponentially reduced weight at neighboring nuclei. We use
this to truncate Eq. (20) to the following terms: on-site terms and tunneling between nearest neighbor nuclei in

Hel, on-site H
(0)
el−el (with i = j = k = l) and pair (i = l, j = k) interactions in Hel−el, and on-site terms (i = j)

in Hph−el.

• The on-site terms captured by H
(0)
el−el cause states where two electrons sit on the same nucleus to have a large

energy cost U , which is on the order of the hydrogen ionization energy. This large energy cost allows the
dynamics to be projected into an effective low-energy Hamiltonian, within the manifold of one electron per
nucleus.

• We integrate out the photons, which along with the pair interaction terms in Hel−el, give rise to the dipole-dipole
interactions previously analyzed in Sec. II.

2. Presentation of effective 2D Hamiltonian

Under these conditions, the effective Hamiltonian governing atom-light interactions and quantum chemistry of a
2D array is given approximately by

H2D =
∑
iσ

(
εsb
†
siσbsiσ + εpb

†
piσbpiσ

)
︸ ︷︷ ︸

H0

−Γ0

∑
ij,σσ′

Gij

(
b†piσbsiσ

)(
b†sjσ′bpjσ′

)
︸ ︷︷ ︸

Hdip−dip

+
∑
iσ

(
Ωe−iωLtb†piσbsiσ + h.c.

)
︸ ︷︷ ︸

Hdrive

+ J
∑
〈ij〉

Si · Sj − teff

∑
〈ij〉σσ′

(b†piσbpjσb
†
sjσ′bsiσ′ + h.c.)

︸ ︷︷ ︸
HtJ=HJ+Ht

= HQO +HtJ (22)

where 〈ij〉 denotes restriction of the sum to nearest neighbors, while Si = (1/2)
∑
σσ′ b

†
siσ~τσσ′bsiσ′ and ~τ denotes the

Pauli matrices. Naturally, one can see that a subset of the terms in H2D (the first three terms on the right hand side)
correspond to the Hamiltonian HQO, Eq. (1), in the quantum optics limit, here written without the rotating frame
and implicitly restricted to a 2D array of atoms. We note that while the assumptions stated in Sec. III B 1 leading
to the above Hamiltonian are reasonable, it is difficult to completely quantify the errors associated with the terms
that are omitted with respect to the full Hamiltonian (16). Indeed, if that could be done, that would amount to
doing exact quantum chemistry, which is likely intractable. Eq. (22) should thus be viewed as a minimal model that
is believed to contain the key physics. We now provide some intuition of the physics described by the “new” part of
the Hamiltonian HtJ arising from quantum chemistry. A more detailed derivation of Eq. (22) is given in Sec. IV for
those readers who are interested.

The Hamiltonian HtJ coincides with the tJ model Hamiltonian of condensed matter physics. In particular, the
on-site interaction energy Uss for two s-orbital electrons to occupy the same nucleus is on the order of the hydrogen
ionization energy, while the tunneling rate ts for such electrons is exponentially suppressed for large d/a0. Thus,
one has that Uss � |ts|, in which case the site occupancy of the ground state is frozen to one s-orbital electron
per site (Mott insulator). However, within second-order perturbation theory, an electron can tunnel to its nearest
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FIG. 5. a) Illustration of the perturbative process giving rise to anti-ferromagnetic Heisenberg spin interactions between nearest-
neighbor electrons in their s-orbitals. An electron tunnels to its nearest neighbor, giving rise to an intermediate state with large
energy E = Uss due to on-site interactions, and an electron subsequently tunnels back. This process is only allowed provided
the two electrons have different spins, due to Pauli exclusion. b) The Heisenberg spin interaction leads to an anti-ferromagnetic
Néel order for the many-body ground state, as qualitatively illustrated here by the checkerboard pattern of up and down spins
of the s-orbital electrons. At next order in perturbation theory, the intermediate state illustrated in a) manifests itself in the
many-body ground state through the appearance of bound holon-doublon pairs (the pairs of sites outlined by rectangles), which
reflect the electronic density-density correlations generated by the interactions. These pairs consist of a holon (dashed circle),
i.e. a nucleus without an electron, and a neighboring doublon with two electrons. c) An analogous process to a) can occur if an
electron on one site is in its p-orbital (with the p-orbital state indicated by orange) and a neighbor is in its s-orbital (indicated
by green). Note that going from the initial to the final state, both the spin and orbital degrees of freedom between the sites
have been exchanged.

neighbor and back, provided that the involved electrons are of opposite spin, as illustrated in Fig. 5a. This gives
rise to the anti-ferromagnetic Heisenberg interactions HJ between the spin degrees of freedom of nearest neighbor
electrons. This reflects the onset of quantum magnetism due to quantum chemistry, and is well-known to arise from
the single-band, half-filled Fermi-Hubbard model, in the limit of Uss � |ts| [24]. The spin interaction strength is given
by J = 4t2s/Uss.

As a result, the global state |σ〉 of the spins in the ground state has anti-ferromagnetic Néel order, as qualitatively
illustrated in Fig. 5b. This alone does not alter the optical properties discussed in Sec. II, as the spin is decoupled from
electron-photon interactions. As far as ground state properties are concerned, the first chemical effect that modifies
the optical response comes from considering the change in total wave function at the next order of perturbation theory.
Due to its complexity, we do not explicitly include it in HtJ. However, it is qualitatively easy to understand and is
discussed in more detail in Sec. IV.

Specifically, while HJ describes the perturbative effect of tunneling within the low-energy manifold of one electron
per nucleus, the intermediate state in Fig. 5a at next order of perturbation theory leads to a total ground state
illustrated in Fig. 5b, where the number of electrons per site is no longer fixed to one, and there is a small probability
∼ (ts/Uss)

2 to find holon-doublon pairs consisting of two electrons on one nucleus and no electrons on a nearest
neighbor. A more precise many-body calculation presented in Sec. IV shows that the fraction of sites occupied by
holons or doublons is 2Phd ≈ 5.16(ts/Uss)

2, where Phd indicates the ratio of the number of holon-doublon pairs
over the total number of lattice sites. These holon-doublon pairs are a manifestation of electronic density-density
correlations that emerge due to quantum chemistry, and we will later argue that light sees these pairs as effective
holes that reduce the optical response of the 2D array.

Having described the relevant physics of the many-body ground state, we now turn to the dynamics that can occur
upon excitation with weak light, when an electron will be promoted to a p-orbital. The dynamics of the photo-
excited electron is contained in the Hamiltonian term Ht. Physically, it describes motion of an excited p-orbital
among the background of s-orbital electrons through the perturbative process illustrated in Fig. 5c. For example, a
p-orbital electron can first tunnel to a nearest neighbor already containing an s-orbital electron, to create a high-energy
intermediate state of energy E = Usp. The s-orbital can then tunnel back to replace the p-orbital on its original site.
Within perturbation theory, the overall rate of such processes is given by teff = 2tstp/Usp, where tp is the tunneling
amplitude of the p-orbital electron, and Usp is the on-site energy associated with having an s- and p-orbital sitting
on the same nucleus. Note that this double tunneling event not only exchanges the p-orbital and s-orbital electrons
at neighboring sites, but also their spin states. The s-orbital electron spins that are displaced in this way by the
excited electron dynamics break the original anti-ferromagnetic order and thus incur a spin interaction energy cost.
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As discussed further in Sec. V, this energy loss due to spin flips results in inelastic photon emission when the p-orbital
drops back down to an s-orbital, and presents a limitation to the maximum achievable refractive index.

The Fermi-Hubbard model or extensions of it have served as the starting point for various studies of the dynamics
of photo-excited electrons (see, e.g., Ref. [25]). Compared to previous work, a key difference in our work is the
inclusion of an additional, long-range dipole-dipole interaction Hdip−dip in Eq. (22), which encodes the possibility of
non-perturbative multiple scattering of light. From Sec. II, we see that this term is needed to correctly predict the
large refractive index in the quantum optics limit, and apparently its reduction in the quantum chemistry regime.

C. Energy scales of interactions

Here, we quantify how the various energy scales behave as a function of d/a0. In principle, the Wannier functions for
a lattice of hydrogen ions could be numerically computed by standard techniques [26] and the microscopic parameters
ts,p, Uss,sp directly obtained. However, this is challenging in our regime of interest where d/a0 � 1, as one expects
ts,p to be exponentially small. We therefore adopt an alternative strategy, assuming that the microscopic parameters

ts,p also characterize the spectrum of the H+
2 hydrogen molecule ion, and benefitting from the fact that the energy

curves of this molecule can be calculated with very high numerical precision. We specifically utilize the numerical
data of Ref. [27].

In particular, we equate 2ts with the energy splitting between the two states of the ground state manifold (with the
labels σ∗u1s and σg1s in the conventional separated-atoms description). These two states approximately correspond
to the odd/even superpositions of a 1s orbital on the two nuclei a and b, (1s)a ∓ (1s)b at large nuclear separation.
Likewise, we equate 2tp with the splitting between the σ∗u2p and σg2p excited states, which roughly correspond to
the states (2px)a ∓ (2px)b at large nuclear separation (we take the axis of separation to correspond to x). Finally,
we approximate the on-site energies at large d/a0 from the orbital wave functions φ1s, φ2px of the isolated hydrogen
atom, with

Uss =
q2

4πε0

∫
dr1dr2

1

|r1 − r2|
φ2

1s(r1)φ2
1s(r2),

Usp =
q2

4πε0

∫
dr1dr2

1

|r1 − r2|
φ2

1s(r1)φ2
2px(r2). (23)

These energies can be evaluated exactly from the known wave functions of the hydrogen atom. As detailed in Sec. IV A,
one finds that Uss = 5|εs|/4 and Usp = 118|εs|/243, where εs ≈ −13.6 eV is the hydrogen ground state energy.

The resulting tunneling and on-site interaction energies are plotted as a function of lattice constant (i.e. internuclear
separation) in Fig. 6a, with energies in units of the Rydberg constant. In Fig. 6b, we plot the quantities teff and
J derived from these microscopic parameters. We also plot the collective decay rate Γ(0) of a 2D array. Once the
inequality |ts,p| � Uss, Usp is no longer satisfied, corresponding to d/a0

<∼ 10, one expects that our minimal model (22)
will break down (see, e.g., Ref. [28] for a study of the single-band Fermi-Hubbard model at half filling).

IV. DERIVATION OF EFFECTIVE 2D HAMILTONIAN

In this section, we derive in greater detail the various terms that appear in the Hamiltonian of Eq. (22). None of
the results here are original, but are instead included for completeness. Readers who want to directly understand the
consequences of Eq. (22) on the maximum refractive index can skip to Sec. V.

A. tJ Hamiltonian

First, we derive the low-energy Hamiltonian HtJ of a 2D array by integrating out high-energy states associated
with double occupation of a nuclear site. Starting from the full Hamiltonian of Eq. (16), and taking the limits of

interest discussed in Sec. III B, we expand the single-electron Hamiltonian Hel = H
(0)
el +H

(1)
el in terms of on-site and

nearest neighbor terms, and consider only the on-site terms in the electron-electron interaction H
(0)
el−el that are energy

conserving (i.e. conserve the occupation number of the s- and p-orbitals individually). Written out, one has

H
(0)
el−el =

∑
i

Ussnsi↑nsi↓ + Usp (npi↑ + npi↓) (nsi↑ + nsi↓) +
∑
iσσ′

Usp,spb
†
siσb

†
piσ′bsiσ′bpiσ. (24)
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FIG. 6. a) Numerical values used in our model for the tunneling rates ts (black) and tp (red) of s- and p-orbital electrons,
respectively, as a function of scaled lattice constant d/a0. These rates are inferred from the spectrum of the H+

2 hydrogen
molecule ion. We also plot the on-site interaction energies Uss (blue) and Usp (green), as calculated from the isolated hydrogen
atom orbitals. Energies are shown in units of the Rydberg constant |εs|. b) Heisenberg interaction strength J (black) and
p-orbital impurity tunneling rate teff (red) as a function of lattice constant, and in units of the Rydberg constant. The solid and
dashed blue curves indicate the collective emission rate Γ(0) of an ideal 2D lattice in the quantum optics limit, and the emission
rate Γ0 of an isolated hydrogen atom, respectively. The orange curve represents the resonant emission rate Γd(δ = ω(0)) related
to a selectively driven atom in an array, as discussed in Sec. II D. The green curve captures the effective dissipation rate in the
optical response of a 2D array, due to quantum chemistry. This is quantified by −2Im ΣQC(δ = ω(0)), where here we evaluate
the self-energy on resonance.

Here, Uss and Usp are defined as in Eq. (23), while

Usp,sp =
q2

4πε0

∫
dr1dr2

1

|r1 − r2|
φ1s(r1)φ2pz (r2)φ1s(r2)φ2pz (r1). (25)

Note that the interaction energy arising from Usp is independent of spin state, while that from Usp,sp is spin
dependent. These interaction energies can be evaluated exactly by taking the known hydrogen atom orbital
wave functions, and by writing the interaction potential in terms of spherical harmonic functions, |r1 − r2|−1 =∑∞
l=0

∑l
m=−l

4πrl<
(2l+1)rl+1

>

Y ∗lm(θ1, φ1)Ylm(θ2, φ2). Here, r< and r> denote the minimum and maximum of r1, r2, respec-

tively. As noted earlier, one finds Uss = 5|εs|/4 and Usp = 118|εs|/243, while evaluation of the spin-independent
energy gives Usp,sp ≈ 0.07Usp. This allows us to ignore the small spin-dependent term Usp,sp from here on. The

primary effect of the long-range nature of the Coulomb interaction (beyond on-site terms of H
(0)
el−el) is a contribution

to dipole-dipole interactions, analyzed further in Section IV C. In the large d/a0 limit, the remaining energy non-
conserving on-site terms (along with contributions from higher bands) would in principle provide an exact treatment
of the negative hydrogen ion (single proton, two electrons) [29, 30], but should not qualitatively change the subsequent
results.

Written out explicitly, the subset of terms we analyze here is then given by

H ′ =
∑
iνσ

ενnνiσ −
∑
〈ij〉νσ

tν

(
b†νiσbνjσ + h.c.

)
︸ ︷︷ ︸

H
(0)
el +H

(1)
el

+
∑
i

Ussnsi↑nsi↓ + Usp (npi↑ + npi↓) (nsi↑ + nsi↓)︸ ︷︷ ︸
≈H(0)

el−el

, (26)

where ν ∈ {s, p}. In principle, the tunneling tp of the p-orbital can be anisotropic along different directions, but
for simplicity we will take an isotropic value here, with the value determined by Sec. III C. In the large d/a0 limit,
we approximate εs,p by the corresponding energy levels of the hydrogen atom. This also assumes that there is one
electron per site, as detailed in Sec. IV C.

In our limit of interest of large d/a0 and half filling, the on-site interaction terms Uss, Usp originating from H
(0)
el−el

greatly exceed the tunneling rates. The Hilbert space thus separates into a low-energy manifold consisting of one
electron per site, and a high-energy manifold where two electrons occupy the same nucleus. Using a Schrieffer-Wolff
transformation [31], one can project the dynamics under H ′ into the low-energy manifold. In particular, we define P
as the projector into the manifold of one electron per nucleus and Q = 1−P as its complement. The Schrieffer-Wolff
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transformation then states that the effective low-energy Hamiltonian is given by H ′eff = 1
2 [S,Hel], where

S =
∑
n,n′

〈n|PHelQ+QHelP |n′〉
En − En′

|n〉〈n′|. (27)

Here, |n〉, |n′〉 are eigenstates of H
(0)
el−el and En,n′ the corresponding energies, while Hel = H

(0)
el + H

(1)
el is the single-

electron Hamiltonian limited to on-site and nearest neighbor terms. Evaluation of this equation gives

H ′eff = HtJ −
4t2p
Usp

∑
iσ

npiσ −
t2s
Usp

∑
〈ij〉σσ′

(nsiσnpjσ′ + nsjσnpiσ′) . (28)

The term proportional to npiσ describes a (small) overall renormalization of the p-orbital energy, which is not relevant
to our discussion. Furthermore, in the limit of weak driving by an external field such that only one p-orbital is
excited (linear optical response), the last term proportional to t2s/Usp has no effect on the dynamics. Indeed, this
term describes a conditional shift of the neighboring s-orbital energies (and thus their transition energies), once a
p-orbital is already excited, and thus only contributes a nonlinear optical effect. We have thus derived the HtJ

Hamiltonian that appears in Eq. (22).
It can be noted that H ′ in Eq. (26) is essentially a two-band Fermi-Hubbard model. Certainly, the Fermi-Hubbard

model over-simplifies the full quantum chemistry problem of an array of hydrogen atoms. Perhaps most prominently,
the on-site interaction energies U , as estimated from the hydrogen electron wave functions, are on the order of
the ionization energy of hydrogen itself, which implies that higher bands are needed to accurately reproduce the full
electronic wave functions of the array. Nonetheless, state-of-the-art computational quantum chemistry calculations [32]
on the ground state of a 1D hydrogen chain at large lattice constants suggest that the Fermi-Hubbard model does
describe well the key physics (e.g., spin correlations consistent with the Heisenberg spin model). Although such a
direct comparison in 2D is beyond numerical capabilities, we take the 1D results as sufficient justification for the
reduction to the 2D Fermi-Hubbard model.

B. Density-density correlations: holon-doublon pairs

The intermediate states in perturbation theory that give rise to the Heisenberg spin interaction HJ (see Fig. 5a
and encoded in Eq. (27)) describe the onset of density-density correlations in the ground state, due to Coulomb
interactions between electrons. Specifically, these states describe holon-doublon pairs, bound states consisting of an
empty nucleus and a doubly occupied one (Fig. 5b). They will influence the optical response of a 2D array, and thus
we summarize how their population in the many-body ground state can be calculated via a slave-fermion formalism
introduced in Ref. [33]. In this approach, one amplifies the Hilbert space associated with s-orbitals on each site,

defining bosonic operators s†iσ that create a spin-σ “spinon” particle on each site, and fermionic operators e†i and d†i
that create “holon” and “doublon” particles, respectively. The physical fermion operator can be expressed in terms
of these new particles as

bsiσ = s†iσdi + sign(σ)siσe
†
i , (29)

where σ denotes the opposite spin value of σ, and sign(↑) = −sign(↓) = 1. The physical Hilbert space is preserved by
imposing the population constraint on the new particles,

e†iei + d†idi +
∑
σ

s†iσsiσ = 1 . (30)

While the discussion thus far just amounts to a formal re-mapping of the problem, a considerable simplification arises
by assuming spin-charge separation. In particular, in the limit |ts|/Uss � 1, the spin sector siσ is assumed to be
characterized by the ground state of the Heisenberg interaction term HJ = J

∑
〈ij〉 Si ·Sj of the tJ model within linear

spin wave theory [24], which is known to reproduce accurately key quantities like the sub-lattice magnetization [34].
The properties of the charge sector involving holons and doublons can then be computed taking into account the
coupling of the chargons to the background spin waves, while assuming that the charge dynamics do not impart
back-action on the spin sector. This approximate theory is known to exhibit good agreement with state-of-the-art
numerical computations on the half-filled Fermi-Hubbard model [33].

Specifically, within linear spin wave theory, it is first assumed that at the mean-field level, there exists anti-
ferromagnetic Néel order. This is captured by dividing the square lattice into alternating sub-lattices A and B, and
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assigning a mean-field value si↑, s
†
i↑ → s0 and si↓, s

†
i↓ → s0 to the spins on sub-lattices A and B, respectively. The

amplitude s0 ∈ R can eventually be computed by taking the expectation value of Eq. (30), whereby

s2
0 =

{
1− 〈e†iei〉 − 〈d

†
idi〉 − 〈s

†
i↓si↓〉 i ∈ A

1− 〈e†iei〉 − 〈d
†
idi〉 − 〈s

†
i↑si↑〉 i ∈ B

(31)

and where 〈. . . 〉 indicates the expectation value in the many-body ground state. This allows to implement the number
conservation constraint self-consistently [33].

One can then re-write the Heisenberg Hamiltonian HJ in terms of these mean-field values and the remaining spinon
operators si↓, si↑ describing fluctuations on sub-lattices A and B, respectively. This Hamlitonian can be diagonalized
in momentum space, as

HJ = 2Js2
0

∑
k

Ωkc
†
kck , (32)

where Ωk =
√

1− γ2
k with γk = (cos kxd + cos kyd)/2 and with bosonic Bogoliubov operators ck = uksk + vks

†
−k of

the Fourier transformed spinon operators sk on either sub-lattice, with u2
k − v2

k = 1 and ukvk = −γk/2Ωk. The spin

sector thus supports a single band of low-lying collective magnon excitations, created by c†k.
We now return to the single-band Fermi-Hubbard model, as described by the terms in Eq. (26) involving only

s-orbital electrons. Re-writing this Hamiltonian in terms of the spinon and chargon operators gives

H ′ = 2Js2
0

∑
k

Ωkc
†
kck +

Uss
2

∑
k

(
d†kdk + e†kek

)
+ 4tss

2
0

∑
k

(
d†Q−ke

†
k + h.c.

)
+ 4tss0

∑
k,q

Vkq

(
d†kdk+qc

†
q + ek+qe

†
kc
†
q + h.c.

)
,

(33)

where we have defined Q = (π/d, π/d)T and Vkq = −(γk+quq +γkvq)/
√
N . (Here, and also in following sub-sections,

we will simply re-use the notation H ′ to avoid defining excessive new variables, with the understanding that the
definitions of H ′ in different sub-sections are distinct.) Physically, the first two terms in this Hamiltonian are the
spinon and chargon self-energies and the third term describes the creation and annihilation of holon-doublon pairs
from the mean-field spin background. The fourth term represents a coupling of the chargons to the background spin
fluctuations.

To calculate the holon and doublon populations at the onset of quantum chemistry (i.e. at large d/a0 or equivalently
at lowest order in ts/Uss), the last term in Eq. (33) can be dropped and one gets a free particle theory in the charge
degrees of freedom. The free particle Hamiltonian can be diagonalized by a fermionic Bogoliubov transformation, and
evaluating Eq. (31) then yields s2

0 ≈ 0.803. In a similar manner, we calculate the number of holon-doublon pairs Phd

over the total number of lattice sites, as Phd =
∑
i〈d
†
idi〉/N , which straightforwardly gives

Phd ≈
1

N

(
ts
Uss

)2 ∑
k∈1BZ

(4s2
0γk)2, (34)

with the sum evaluated over the first Brillouin zone as indicated. Then, in the thermodynamic limit, Phd ≈
2.58(ts/Uss)

2 as stated in Sec. III.

C. Electrostatic interactions

Here, we analyze in more detail the Coulomb interactions both between electrons and nuclei, and between electrons,
with the goal of deriving H0 and the so-called longitudinal part of Hdip−dip in Eq. (22). The on-site term of the single-

particle Hamiltonian H
(0)
el is band-diagonal and can be written as H

(0)
el =

∑
iσν ενnνiσ, where

εν =

∫
d3r φ∗ν(r)

 p2

2m
−
∑
j

VC(r + Rij)

φν(r). (35)

In the large d/a0 limit, it is convenient to expand the Coulomb potential VC(r − Rij) as a multipolar expansion.
Explicitly,

εν =

∫
d3r φ∗ν(r)

(
p2

2m
− VC(r)

)
φν(r)− q2

4πε0

∑
j 6=i

1

Rij
− q

4πε0

∑
j 6=i

Rij · qνν ·Rij

R5
ij

+ . . . , (36)
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where we have defined Rij = Ri −Rj and Rij = |Rij | as well as the quadrupole moment qνν′ = q
∫
d3r φ∗ν(r)(3r⊗

r− |r|2)φν′(r). We have also used the parity of the Wannier functions to conclude that qνν′ is diagonal in the band
indices (with ν, ν′ restricted to s, p) and to discard a first-order dipolar term. It should be noted that εν diverges due
to the sum

∑
j 6=iR

−1
ij , which reflects the infinite potential energy of a point-like electron within a lattice of positive

charges. At half filling, however, each nucleus is overall charge neutral due to the presence of an electron at the same

site, eliminating this infinity. Formally, the divergence cancels with a corresponding term in H
(1)
el−el.

To establish this, we now consider the electron-electron interactions H
(1)
el−el involving pairs of sites (i = l and j = k

in Eq. (20)). Applying a similar multipolar expansion,

H
(1)
el−el =

q2

8πε0

∑
i,j 6=i,νν′,σσ′

1

Rij
nνiσnν′jσ′ +

q

4πε0

∑
i,j 6=i,νν′,σσ′

Rij · qνν ·Rij

R5
ij

nνiσnν′jσ′

+
∑

i,j 6=i,νµ,σσ′

dµµ · (1− 3R̂ij ⊗ R̂ij) · dνν
8πε0R3

ij

(
b†µiσbµiσ

)(
b†νjσ′bνjσ′

)
+ . . . ,

(37)

where we have defined R̂ij = Rij/Rij and the dipole moment dνν′ = q
∫
d3r r φ∗ν(r)φν′(r), and where ν = p (s) when

ν = s (p). The first two terms in this expression will cancel with the terms in the multipolar expansion of H
(0)
el under

the assumption of one electron per site,
∑
νσ nνiσ ≈ 1. This justifies keeping only the first term on the right hand

side of Eq. (36) for εν . We furthermore approximate this first term by the energy eigenvalues of the bare hydrogen
atom.

The last term in the expansion of H
(1)
el−el is not cancelled, however. Physically, it drives transitions between the

s- and p-like orbitals on pairs of sites. The net electrostatic interaction is therefore captured, to first-order in the
expansion in d/a0, by the Hamiltonian

H ′ =
∑

ij 6=i,νµ,σσ′

dµµ · (1− 3R̂ij ⊗ R̂ij) · dνν
8πε0R3

ij

(
b†µiσbµiσ

)(
b†νjσ′bνjσ′

)
. (38)

Some terms in H ′ are energy non-conserving (e.g., two s-orbitals being annihilated to form two p-orbitals). These
encode the well-known van der Waals interaction, where fluctuations involving these interactions lead within pertur-
bation theory to a ∼ 1/R6

ij attractive potential between two ground-state atoms. Of relevance to us at large d/a0 are

the resonant terms in H ′, which show the characteristic ∼ 1/R3
ij scaling of near-field dipole-dipole interactions and

enable energy transfer. In the notation of Sec. II A, dsp = p0x̂ and therefore H ′ takes the effective form

H ′eff = −Γ0

∑
ij 6=i,σσ′

G
‖
ij

(
b†siσbpiσ

)(
b†pjσ′bsjσ′

)
. (39)

in terms of the single-atom spontaneous decay rate Γ0 introduced previously. We see that this encodes the part of the
dipole-dipole interaction Hamiltonian Hdip−dip in Eq. (1) associated with the longitudinal component of the Green’s

function. In particular, G
‖
ij = x̂ ·G‖(Rij , ω0) · x̂ with ∇×G‖(r, ω0) = 0. Explicitly,

x̂ ·G‖(r, ω0) · x̂ =
3

4

[
− 1

(k0|r|)3
+

3

(k0|r|)3

(x̂ · r)2

|r|2

]
. (40)

D. Photon-mediated interactions

The remaining transverse component of the dipole-dipole interactions in Hdip−dip originates from integrating out
the photons in Hph−el in Eq. (21), and restricted to the terms describing on-site electronic transitions driven by the

field. In particular, we consider the minimal light-matter Hamiltonian H ′ = H0 +Hph +H
(0)
ph−el, where

H
(0)
ph−el = −iω0p0

∑
iσ

A(Ri) · x̂
(
b†piσbsiσ − h.c.

)
. (41)

Above, we have used the parity of the Wannier functions and the relation 〈φs(r−Ri)|p|φp(r−Ri)〉 = imω0p0/q for the
momentum matrix element, where p0 is the dipole matrix element defined in Sec. II A. Physically, this Hamiltonian
states that transitions between s and p are accompanied by photon emission/absorption. Emitted photons can
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then subsequently propagate and either induce transitions in other atoms, or propagate beyond the atomic medium
altogether, resulting in spontaneous emission and energy loss of the atomic subsystem.

Formally, one can integrate out the photons and derive the dynamics of the reduced atomic density matrix ρ(t)
within the standard Born-Markov approximation, to obtain

ρ̇(t) ≈ − i
h̄

[H0, ρ(t)]− 1

h̄2

∫ ∞
0

dt′〈e−itH0/h̄[Vph−el(t), [Vph−el(t− t′), ρ(t)⊗ |0〉〈0|]]eitH0/h̄〉 , (42)

where Vph−el(t) = eit(H0+Hph)/h̄H
(0)
ph−ele

−it(H0+Hph)/h̄ represents the interaction Hamiltonian transformed to the in-

teraction picture and 〈. . . 〉 denotes an expectation value with respect to the field vacuum |0〉. Evaluating Eq. (42)

gives rise to a master equation of the form ρ̇(t) = −i/h̄(H ′effρ(t)−ρ(t)H ′†eff) +
∑
i Jiρ(t)J†i . Within the quantum jump

formalism, this equation describes time evolution under a non-Hermitian Hamiltonian H ′eff punctuated stochastically
by quantum jumps realized by a set of jump operators Ji, whose explicit form is not relevant here. Explicitly,

H ′eff = H0 −
i

h̄

∫ ∞
0

dt′〈e−itH0/h̄Vph−el(t)Vph−el(t− t′)eitH0/h̄〉 . (43)

Substituting the explicit expression for Vph−el(t) implied by Eq. (41), the effective Hamiltonian can be written in
terms of the time-correlator Cij(t) = 〈A(Ri, t)⊗A(Rj , 0)〉 of the interaction picture vector potential operators as

H ′eff = H0 −
iω2

0p
2
0

h̄

∑
ij,σσ′

∫ ∞
0

dt′
[
x̂ ·Cij(t′) · x̂

(
b†piσbsiσ

)(
b†sjσ′bpjσ′

)
eiω0t

′
+ h.c.

]
. (44)

Above, we have only retained energy-conserving terms, where the photon mediates a de-excitation and excitation of
a p- and s-orbital, respectively. The off-resonant terms, on the other hand, are the photon-mediated counterparts
to the van der Waals potential of the electrostatic interaction, which are often referred to as the Casimir-Polder
potential [35]. These produce an overall shift of ground state energy between a collection of atoms in their s-orbitals,
which is not relevant for our purposes.

The correlator Cij(t) of the vacuum field can readily be calculated to yield

H ′eff = H0 − Γ0

∑
ij 6=i,σσ′

G⊥ij

(
b†siσbpiσ

)(
b†pjσ′bsjσ′

)
, (45)

where now G⊥ij = Gij−G‖ij is the projection along x of the transverse part of the Green’s function (∇·G⊥(r, ω0) = 0).

Combining this result with Eq. (39) gives the total dipole-dipole interaction Hdip−dip of Eq. (1).

V. REFRACTIVE INDEX: THE QUANTUM CHEMISTRY LIMIT

In Sec. III, we presented our effective model and Hamiltonian (22) to describe atom-light interactions, including
non-perturbative multiple scattering, and quantum chemistry within a 2D array at large lattice constant d/a0. Three
main effects that emerge from chemistry are quantum magnetism, electronic density-density correlations, and hopping
dynamics of photo-excited electrons. Here, we analyze their effects in limiting the refractive index of a 3D crystal.

We begin by recalling the main result in the quantum optics limit of Sec. II, involving only the HQO term of Eq. (22).
In particular, for weak light at normal incidence, a 2D array behaves as a single-mode system, where the light excites
only a single collective mode |Ekxy=0〉, and this collective mode only re-radiates light elastically at a rate Γ(kxy = 0)
back in the same kxy = 0 direction (either forward or backward). This single-mode nature of the quantum optics
limit is illustrated in Fig. 7a (dashed purple box), and produces the large, purely real refractive index of a 3D lattice.
One effect that emerges due to quantum chemistry is the appearance of anti-ferromagnetic Néel ordering in the spin
component |σ〉 of the many-electron ground state |G〉, as discussed in Sec. III B 2. This same spin wave function is
inherited by |Ekxy=0〉, as the exciting light does not affect spin. The Néel ordering in itself thus does not alter the
refractive index.

In contrast, the excited electron dynamics and density-density correlations break the single mode response by
allowing for inelastic or spatial multi-mode emission processes, as illustrated in Fig. 7b (dashed blue box). We now
describe their optical effects in greater detail, and describe how they can be incorporated into a frequency-dependent
effective level shift and inelastic decay rate of the excited state, as characterized respectively by the real and imaginary
parts of a self-energy term ΣQC(δ) (Fig. 7c).
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FIG. 7. a) In the quantum optics regime, a large refractive index is achieved due to the single-mode response of an individual
2D layer, where weak incident light only couples the many-electron ground state |G〉 to a single collective excited state |Ekxy=0〉,
and this state emits elastically back into the same optical mode at a rate Γ(0). b) Quantum chemistry allows for inelastic or
spatial multi-mode emission. Spatial multi-mode emission into directions kxy 6= 0 arises from light scattering off of electronic
density-density correlations, in the form of holon-doublon pairs (dashed green arrow). Hopping of the photo-excited electron at
a rate ∼ teff couples the collective excited state |Ekxy=0〉 to a continuum of additional states |n〉, labeled by an integer n that
describes the degree to which the hopping disturbs the anti-ferromagnetic Néel order of the electron spins, as described further
in the main text. This process, along with the effective decay rate Γd(δ) = −2Im χ(0, δ)−1 of the excited electron, leads to
inelastic emission. c) The various quantum chemistry processes illustrated in Fig. 7b give rise to a modified optical response of
the 2D layer, which can be captured by a complex self-energy ΣQC(δ) of the excited state |Ekxy=0〉. The real and imaginary
parts describe an chemistry-induced energy shift and effective inelastic decay rate, respectively.

A. Dynamics of photo-excited electron

In this subsection, we neglect density-density correlations (i.e. assuming exactly one electron per site), and focus
on the effect of photo-excited electron dynamics as described by the tJ model Hamiltonian HtJ in Eq. (22). Instead
of dealing directly with HtJ, we will work with the simpler tJz model, which is known to capture well the dynamics
at short times [36]. In the tJz model, only the z components of the spins are assumed to interact,

HtJz = J
∑
〈ij〉

SizSjz︸ ︷︷ ︸
HJz

−teff

∑
〈ij〉σσ′

(b†piσbpjσb
†
sjσ′bsiσ′ + h.c.)

︸ ︷︷ ︸
Ht

, (46)

where again the spin interaction J is restricted to electrons in s-orbitals. In this case, classical antiferromagnetic Néel
order describes exactly the global spin ground state configuration |σ〉 of the electronic ground state |G〉 and excited
state |Ekxy=0〉, as illustrated in Figs. 8a,b. The excited state is an equal superposition of the excited p-orbital being
located at different sites, as we qualitatively show in Fig. 8b by depicting two representative configurations in the
overall superposition.

We thus want to derive the index of the system evolving under Eq. (22) and with the replacement HtJ → HtJz
. We

also assume that due to the small magnitude of J (compared to both Γ(0) and teff , as seen in Fig. 6b), the energies
Eσ of different spin configurations will be non-zero but negligible from the standpoint of phase evolution e−iEσt.
Furthermore, we will ignore the contributions of Hdrive beyond the matrix element connecting |G〉 and |Ekxy=0〉, as
all other contributions only lead to multi-photon corrections in the refractive index that are nonlinear in the field
intensity.

The first non-trivial effect beyond the quantum optics limit arises from Ht acting on |Ekxy=0〉. As illustrated in

Fig. 8b, the state |Ekxy=0〉 = N−1/2(
∑
j |rj〉)|σ〉 can be expressed as an equal-weight superposition, where |rj〉 denotes

that the excited p-orbital is located at site rj and |σ〉 is the ground-state spin configuration. Ht allows the excited
electron to exchange both its orbital and spin degrees of freedom with any nearest neighbor, thus Ht couples |Ekxy=0〉
to the new normalized state

|1〉 =
1

2
√
N

∑
j

∑
δ1=±dx̂,±dŷ

|rj + δ1〉|σj,δ1
〉, (47)

where |rj +δ1〉 describes the position of the p-orbital following a move in the nearest neighbor direction δ1 and |σj,δ1
〉

is the spin state following the corresponding spin exchange. One sees that the states |σj,δ1
〉 break the perfect Néel
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FIG. 8. Physics of the tJz model. a) The many-body ground state of the 2D array consists of a single s-orbital electron per
site (green), with classical anti-ferromagnetic Néel order of the spins, as indicated by the arrows. b) A single incident photon
excites the array into the superposition state |Ekxy=0〉, where any electron at site j is equally excited to a p-orbital (yellow)
without changing the spin. c) Dynamics of the excited electron via the Hamiltonian Ht couples the state |Ekxy=0〉 to the
state |1〉, a superposition state of all possibilities where the p-orbital can exchange orbital and spin degrees of freedom with
an s-orbital electron in a neighboring site (solid red arrows). This dynamics breaks the perfect Néel order for the s-orbital
electrons inside the blue boxes. Certain configurations making up the superposition are labeled and described further in the
main text.

order, as indicated by the blue boxes. From these boxes, one also visualizes that all spin states are orthogonal to one
another, 〈σj,δ1

|σj′,δ′1〉 = δj,j′δσ1,σ′1
and thus the state |1〉 is entangled in the orbital and spin degrees of freedom. The

matrix element of the interaction is 〈1|Ht|Ekxy=0〉 = −2teff .

A key consequence of the above discussion is that the dynamics of Ht results in distinguishable spin backgrounds,
even when the p-orbital winds up on the same final site. This is illustrated in Fig. 8b and c, where on one hand in Fig. 8b
we explicitly show two positions |rj〉 and |ri = rj − dx̂ + dŷ〉 of the p-orbital in the state |Ekxy=0〉, and on the other
hand in Fig. 8c we draw the new orbital states |rj+dŷ〉 following an upward move and |(rj−dx̂+dŷ)+dx̂)〉 = |rj+dŷ〉
following a rightward move, respectively. Despite the orbital wave functions being the same, the orthogonality of the
associated spin wave functions |σj,dŷ〉 and |σi,dx̂〉 is seen by the different blue boxes indicating where the Néel order
has been broken as a result of the p-orbital motion. Note that should broken order be left behind once the p-orbital
relaxes by photon emission, the photon emission will be inelastic and thus contributes an imaginary component to
the refractive index.

To calculate the effect on the index, we must understand how state |1〉 further evolves under excited-state hopping
dynamics and dipole-dipole interactions, as contained in the approximate Hamiltonian Ht + H0 + Hdip−dip (from
above, recall that we ignore HJz and Hdrive in subsequent evolution). These processes are pictorially described in
Fig. 7b, by orange (Ht) arrows denoting further hopping dynamics, and red, wavy arrows (H0 +Hdip−dip) denoting
dipole-dipole interactions. Due to the different scalings of the interactions seen in Fig. 6b, we consider simpler limits
where either Ht or H0 +Hdip−dip completely dominates. In any case, from the standpoint of |Ekxy=0〉, these dynamics
couple this state to a continuum. This leads to an effective decay rate other than the preferred elastic emission
channel, decreasing the optical response. Our goal is to quantify this in terms of a “self-energy” contribution to state
|Ekxy=0〉.

We first consider when H0 +Hdip−dip dominates subsequent evolution of |1〉. Since H0 +Hdip−dip does not couple
to spins, the various states in |1〉 with different spin backgrounds |σj,δ1

〉 always retain orthogonality in subsequent
evolution under H0 +Hdip−dip. This implies that the excited p-orbital |rj +δ1〉 in |1〉 is “distinguishable” in complete
analogy to the situation studied in Sec. II D, where we considered an array in the quantum optics limit with a single
atom selectively driven by an external source. In particular, each orbital configuration |rj+δ1〉 represents an excitation
deposited on a selected atom, which can spread inside the array through the propagator Gχ(δ) = −(H0 +Hdip−dip)−1

(in the rotating frame of the incident light) defined in Sec. II D. One of the consequences is an effective decay rate
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Γd(δ) = −2Im 1/χ(0, δ) as seen by the distinguishable excitation, which is depicted by red, wavy arrows in Fig. 7b
from the state |1〉. This analogy is manifestly seen once we use the Nakajima-Zwanzig formalism [37] to integrate out
the excited states |rj + δ1〉 and the continuum to which they couple, to produce an effective non-Hermitian dynamics
on state |Ekxy=0〉. The resulting complex self-energy, encoding the coherent energy shift and decay rate due to this

coupling to a continuum, is given by [37] Σt(δ) = 〈Ekxy=0|HtGχ(δ)Ht

∣∣Ekxy=0

〉
= −4t2effχ(0, δ). The appearance of

the susceptibility χ defined by a classical optics calculation confirms the analogy.
We now consider the opposite limit where Ht dominates the subsequent dynamics of the state |1〉. Besides returning

back to |Ekxy=0〉, Ht connects |1〉 to an additional orthogonal state |2〉 characterized by n = 2 non-trivial hops of the
p-orbital relative to its position in the original state |Ekxy=0〉,

|2〉 =
1

2
√

3N

∑
j

∑
δ1,2=±dx̂,±dŷ

(1− δδ1,−δ2
) |rj + δ1 + δ2〉|σj,δ1,δ2

〉. (48)

The corresponding matrix element is 〈2|Ht|1〉 = −
√

3teff . The state |2〉 has an increased number of nearest neighbors
with broken Néel ordering, with the spin states |σj,δ1,δ2

〉 being orthogonal to one another and to the spin states in |1〉
and |Ekxy=0〉. For a larger number of hops n > 2, a standard approximation is to assume that spin backgrounds are
always distinguishable [38, 39]. Then, the problem reduces to hopping on a Bethe lattice and the matrix elements are

〈n+ 1|Ht|n〉 = −
√

3teff for n ≥ 1, as discussed in Appendix C.
Intuitively, the effect of hopping over the states |n〉 will dominate the effective dissipation seen by the state |Ekxy=0〉

when teff � Γd(δ). As shown in Fig. 6, in the relevant range of lattice constants d � a0, this regime never occurs
when illuminating the system exactly at the resonance δ = ω(0). However, hopping to other states |n〉 can become
important for other near-resonant driving frequencies δ 6= ω(0). Hopping on the Bethe lattice has been previously
solved in Ref. [40], with the main results summarized in Appendix C. In particular, one finds that these dynamics
contribute an imaginary self-energy to the the excited state |Ekxy=0〉, Σt(δ) = −4iteff. This intuitively states that the
effective decay rate from |Ekxy=0〉 to the continuum of states |n〉 is proportional to the hopping matrix element itself.

Up to now, we have considered the limits where either Ht or Hdip−dip dominates the dynamics from the state |1〉.
To include both effects, we can use the simple, phenomenological formula

Σt(δ) =
4t2effχ(δ, 0)

iteffχ(δ, 0)− 1
, (49)

which interpolates between the results obtained in the two limits. This is the main result of Sec. V A, as it reduces
all of the chemistry-induced photon-excited electron dynamics to an effective complex self-energy correction to the
excited state |Ekxy=0〉.

B. Density-density correlations

We now ignore the p-orbital dynamics of Ht, and consider just the effect of ground-state density-density correlations
under the quantum optics Hamiltonian HQO. The holon (nucleus with no electron) and doublon (approximately a
negatively charged hydrogen ion) have a completely different response to light and in particular do not efficiently
couple to light near resonance with the neutral hydrogen transition. At large d/a0, we can thus model the optical
response of the holon-doublon pair in the otherwise perfect array as a classical array of point dipoles with two
consecutive empty sites. The breaking of discrete translational symmetry by these two sites induces light scattering
from the incident direction into random ones, effectively leading to an imaginary contribution to the index. The fact
that light scattering is sensitive to density-density correlations is well-known in other contexts, for example, forming
the foundation for inelastic x-ray scattering spectroscopy [41].

Specifically, we want to quantify the optical properties of an array with a fraction Phd � 1 of holon-doublon pairs,
as defined in Eq. (34) (i.e. number of pairs over the total number of lattice sites). Assuming that the density of
pairs is low enough that the emission from different pairs is uncorrelated, we can proceed in an analogous fashion to
Sec. II D, where we calculated the optical response of an array with a small fraction Ph of random holes. Analogous
to Eq. (15), we find that

r(δ) ≈ iΓ(0)/2

−δ + ω(0)− iΓ(0)/2 + PhdΣhd(δ)
, t(δ) = 1 + r(δ), (50)

where we have defined the complex self-energy Σhd(δ) =
∑

ξ̂=x̂, ŷ 1/[χ(0, δ) + χ(dξ̂, δ)], which is averaged over the

two possible orientations ξ̂ = x̂, ŷ of the holon-doublon pairs. In particular, the imaginary component of Σhd(δ)
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FIG. 9. Optimal refractive index. a) Approximate calculation of maximum real part of the refractive index (solid, blue line,
maximized over the detuning δ), as a function of lattice constant, including the effects of quantum chemistry ΣQC(δ), without
additional phenomenological decay Γ′ = 0. The dashed black curve represents the result n = λ0/(2dz) in the quantum optics
limit, while the red curve shows the imaginary part of the index. b) Given any fixed value of the real index nre, we plot the
minimum imaginary part nim, obtainable with proper choices of d and δ (colored, solid lines). The curves (from brown at the
bottom, to magenta on top) refer to increasing values of the additional inelastic losses Γ′ = 0.01, 0.1, 1, 10, 102, 103. The
black solid line shows the case Γ′ = 0, which is purely limited by the intrinsic effects of ΣQC(δ). The dotted, colored lines
represent the asymptotic scaling nim ∼ [k3

0d
3
QCΓ′/(12πΓ0)]n3

re, where dQC ≈ 15a0 approximately represents the lattice constant
where the effects of quantum chemistry become relevant (black, dotted vertical line of Fig. 9-a).

characterizes an effective dissipation arising from the scattering of normally incident light kxy = 0 into random
other directions. In practice, the (modest) difference of the above equation as compared to Eq. (15) is that the
scattering between two consecutive sites occupied by a holon-doublon pair is correlated, and one cannot simply make
the substitution Ph → 2Phd in Eq. (15). Importantly, though, a holon-doublon pair retains a relatively large resonant
cross section to scatter into other directions, close to the value of Eq. (14). This can be understood by noticing that
the pair strongly scatters into the isoenergetic modes of Fig. 4b that satisfy ω(kxy) ≈ ω(0) (black dashed line), which
are roughly characterized by |kx| ∼ const � π/d, and |ky| ≤ π/d. When the holon-doublon pair is oriented along x̂,
the relevant Bloch modes cannot resolve the two defects placed at a distance d, and the total scattering cross section
is then very close to that of a single defect. On the contrary, when the connecting vector between the pair of sites is
along ŷ, the Bloch modes can resolve the two sites, and the scattering cross section is roughly twice that of a single
defect, in agreement with numerical evidence.

C. The limit of refractive index by quantum chemistry

From the previous subsections, we can assign a total complex self-energy ΣQC(δ) = Σt(δ) + PhdΣhd(δ) to the
collective mode |Ekxy=0〉 of a 2D array, which includes the effects of both the p-orbital dynamics Σt via Eq. (49) and
the density-density correlations Σhd via Eq. (50). The frequency-dependent resonance shift Re ΣQC(δ) and inelastic
losses −2Im ΣQC(δ) alter the linear reflection and transmission coefficients in response to a normally incident field,
to r(δ) = iΓ(0)/[−2δ + 2ω(0) + 2ΣQC(δ) − iΓ(0)] and t(δ) = 1 + r(δ). A non-zero loss −2Im ΣQC(δ) > 0 generally
results in a loss of coherently scattered energy |r|2 + |t|2 < 1. It should also limit the maximum index achievable.
This can easily be seen in the limit of large −2Im ΣQC(δ)/Γ(0)� 1, where r(δ) ∼ 0 and t(δ) ∼ 1 indicating that the
array ceases to respond to light altogether.

The derivation of the refractive index of a 3D lattice, based upon multiple scattering between 2D arrays, follows
in a manner analogous to that presented in Sec. II C. In particular, recall that we obtained the dispersion relation
J(kz) of Eq. (8) for a 3D system by diagonalizing the Hamiltonian H1D

dip−dip,ij of Eq. (7) describing field-mediated
interactions between planes. Within the limits that we consider quantum chemistry, one can repeat the calculation
with the modification of the intra-plane matrix element H1D

dip−dip,ii → H1D
dip−dip,ii+ΣQC(δ) to include chemistry effects.

This modifies the dispersion relation of Eq. (8) into the nonlinear form J(kz)→ J(kz) + ΣQC(J(kz)).
By choosing an aspect ratio of dz/d = 2.5, we can ensure that the contribution of the evanescent field to the

band (i.e. Jev(kz), as defined in Eq. (9)) is negligible in the range of interest d/a0 � 1, guaranteeing that the
modified dispersion relation Eq. (8) is readily invertible (see Appendix A for more quantitative details). By defining
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the complex refractive index as n(δ) = kz(δ)/k0, we obtain

n(δ) =
1

k0dz
arccos

[
cos(k0dz) +

Γ(0) sin(k0dz)

2δ − 2ω(0)− 2ΣQC(δ) + iΓ′

]
. (51)

To generalize the derivation for subsequent discussions about possible experimental realizations, we have also included
a phenomenological inelastic loss term Γ′ to the self-energy, ΣQC(δ)→ ΣQC(δ)−iΓ′/2, which accounts for other effects
beyond the quantum chemistry interactions explicitly considered up to now. One can prove that the definition of
index leading to Eq. (51) correctly describes the optical properties within the framework of classical macroscopic
electrodynamics. For example, in Appendix D, we show that the formula of n(δ) correctly describes the reflection
and transmission of a finite-length 3D system when inserted into standard Fresnel coefficient formulas for a dielectric
slab, as long as the wavelength of light cannot resolve the atomic positions, i.e. when k0dz � 1 and |n(δ)k0dz| < 1.

Eq. (51) represents our final formal result, where we are able to transition from the quantum optics to (weak)
quantum chemistry limit, while calculating the refractive index in a manner that still retains non-perturbative multiple
scattering of light. In order to appreciate its non-perturbative nature, we can examine the requirements for Eq. (51) to
reduce to usual perturbative theories of optical response, such as the Drude-Lorentz model. As shown in Appendix F,
this occurs when the inelastic losses due to quantum chemistry become so intense as to strongly suppress the effects of
multiple scattering, specifically, when −2Im ΣQC(δ)/Γ(0) > 1 and k0dz � 1. This observation helps to qualitatively
understand why perturbative theories of optical response work so well when quantum chemistry interactions become
strong, as is the case for real solids.

We use Eq. (51) to calculate the complex refractive index first considering Γ′ = 0, as a function of the lattice
constant a0 � d� λ0, choosing the detuning δ which maximizes its real part. In the numerical implementation, we
must avoid the range of frequencies associated with the bandgap, where there are no propagating modes, i.e. the range
of values of J that have no solution for any kz. It can readily be checked that even if the losses are explicitly set to
zero (Im ΣQC = Γ′ = 0), within the bandgap region, Eq. (51) would predict a complex index, incorrectly suggesting
a lossy medium. We emphasize that this issue is simply associated with how to define a proper macroscopic index in
the bandgap regime, whereas the microscopic dispersion relation J(kz) remains correct.

The results of Eq. (51) for Γ′ = 0 are shown in Fig. 9-a, where the blue line shows the maximum real part of the
index, while the orange line represents the associated imaginary part (i.e. at the same frequency δ). The red, dashed
line shows the ideal quantum optics scaling of nmax = λ0/2dz obtained in Eq. (10). One can see that the model
predicts a possible real part of the index as large as maxnre ≈ 30 around d ≈ 15a0, accompanied by a small imaginary
part describing losses nim

<∼ 1, for an optimal lattice constant. As one further decreases the lattice constant, one first
sees a decrease in the real part of the index and an increase in the imaginary part, followed by a decrease in both,
even as the effects of quantum chemistry continuously increase, as characterized by ΣQC(δ). This reflects our earlier
observation that a huge inelastic loss rate should make an individual 2D layer increasingly transparent.

Rather than focus on how large the real part of the index can be, a more relevant question might be how small the
loss can be, min nim, given a target value of the real part of the index nre. In Fig. 9b (solid black curve), we calculate
the minimum loss for a target nre, optimizing over the lattice constant d and detuning δ. We next consider how
robust our ultrahigh index, low loss material is to hypothetical additional dissipation rates Γ′ > 0 beyond the specific
quantum chemistry interactions that we considered. In Fig. 9b we repeat the same analysis, but including in Eq. (51)
a range of values Γ′/Γ0 = 0.01, 0.1, 1, 102, 103 (from the bottom, solid brown curve to the top, solid magenta curve).
The dotted lines represent the scaling min nim ∼ [k3

0d
3
QCΓ′/(12πΓ0)]n3

re, an approximate result derived in Appendix
E, and which is valid as long as nim � nre. There, dQC ≈ 15a0 roughly represents the lattice constant where quantum
chemistry starts to play a major role (as shown by the dotted, vertical line in Fig. 9a).

From the above discussions, it is clear that in principle one possible approach to achieve high-index materials is to
realize high-density arrays of well-positioned, sufficiently homogeneous quantum emitters [6]. The maximum index
would be achieved at a distance between emitters right before the electronic orbital wave functions between nearest
neighbor emitters begins to appreciably overlap. Although we know of no specific platform that immediately allows
for an ultrahigh index, we note that there has been steady progress to deterministically position emitters, such as
by self-organization [42] or ion beam implantation [43]. We also note that in principle, quantum emitters already
exist with sufficiently small values of Γ′ (where we allow Γ′ to incorporate non-radiative decay, additional undesired
radiative decay paths, dephasing, and inhomogeneous broadening) that an ultrahigh index might be possible, if they
could be arranged into arrays. For example, single color centers in diamond (such as silicon-vacancy centers) exhibit
inelastic rates as low as Γ′ ∼ Γ0 [43, 44], and inhomogeneous broadening levels at low temperatures in the range of
Γ′/Γ0 ∼ 10-100 [43, 45, 46]. Single quantum dots can offer almost lifetime-limited linewidths with Γ′ � Γ0 [47, 48],
although some technological improvement is still required to reduce the amount of inhomogeneous broadening in
ensembles. Separately, since the key underlying ingredient for high index is a near-ideal single-mode response of a
single 2D layer, 2D materials supporting excitonic resonances could also be a suitable platform. In particular, 2D
transition metal dichalcogenides have been observed to exhibit nearly perfect reflection on resonance [49–51], due
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to the high radiative efficiency of excitons in such systems. If such individual layers with sufficiently low loss could
be stacked with controllable spacings between layers [52], an ultrahigh index should exist until quantum chemistry
between layers becomes appreciable and the index reduces back to the value found in bulk 3D material.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have shown that the magnitudes of refractive indices observed in known optical materials likely
does not reflect a fundamental limit, and an ultrahigh index, low-loss material should be allowed by the laws of nature.
Our analysis also suggests why an answer to the problem surrounding the limits of refractive index has been elusive,
as the answer seemingly requires one to understand the nature of non-perturbative multiple light scattering over a
broad range of densities that spans across the quantum optics and quantum chemistry limits. Our work will hopefully
stimulate new efforts to identify, design, and fabricate ultrahigh index materials.

While our current analysis focused on a specific model in which the limits to index arise due to electronic density-
density correlations and dynamics of excited electrons, it would be interesting in future work to examine other general
material models. For example, are there paradigms in which the mechanisms discussed here can be strongly suppressed,
leading to higher indices? In order to better answer such questions, and also to aid in the search or possible design
of ultrahigh-index materials, it might also be desirable to develop more general frameworks for the calculation of
optical response in the regime of non-perturbative scattering, and which ideally might be integrated with state-of-the-
art computational quantum chemistry. One promising approach might be to generalize the electromagnetic Green’s
function based methods to many-body condensed matter settings.

Finally, while our work specifically focused on the question of linear refractive index, it more generally suggests that
there is a broad range of material densities where other important optical properties might have surprising behavior,
due to strong multiple scattering. As one example, it would be interesting to develop similar theories for the limits of
nonlinear optical response, and to address whether there exist mechanisms to enhance the nonlinear response beyond
that of known materials.
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Appendix A: Invertibility of the optical band structure

In this section, we discuss the effect of the evanescent interaction between atomic layers in the quantum optics
regime, which can make the optical band structure non-invertible. We start from the band structure of the 3D system
J(kz), as described in Eq. (8) and Eq. (9). We are interested in the limit dz � λ0 and dz ≥ d. By Taylor expanding
in the ratio | cos (kzdz) / cosh (|gmn| dz) | � 1, one can simplify the evanescent contribution to the dispersion relation
to Jev(kz) ≈ (λ0/dz) [−A(dz/d) +B(dz/d) cos(kzdz)], where we define the coefficients

A(dz/d) =

(
dz
d

) ∑
m∈Z
n∈Z

(m,n)6=(0,0)

m2

√
m2 + n2

[
1− tanh

(
2π(dz/d)

√
m2 + n2

)]
,

B(dz/d) =

(
dz
d

) ∑
m∈Z
n∈Z

(m,n)6=(0,0)

m2

√
m2 + n2

[
tanh

(
2π(dz/d)

√
m2 + n2

)
cosh

(
2π(dz/d)

√
m2 + n2

) ] .
(A1)

which only depend on the aspect-ratio of the lattice dz/d. This allows to easily calculate the properties of the band in
an analytic fashion. The presence of a local maximum in Jev around |kz| <∼ π/dz is responsible for the non-invertible
behavior of the band. In the limit k0dz � 1, the condition for this local maximum to exist becomes

d

λ0
<

d

dz

√
2B(dz/d)

π
≈ 2

√
2d

πdz
e−πdz/d, (A2)

which defines the regime where the band is non-invertible. This threshold is represented by the white, dashed line of
Fig. 10-a, where we illustrate the condition as a function of λ0/d and dz/d. In the same figure, we perform an exact
numerical calculation of the band structure equation (8), and indicate with blue and green the regions of parameter
space where the band structure is invertible and non-invertible, respectively. We see that the approximate condition
of Eq. (A2) agrees well.

The condition above describes when Jev(kz) is so strong to radically alter the band structure, making it non-
invertible. Here, we want to quantify when the evanescent field negligibly contributes to the overall band structure.

a) b) |Jev/J1D|
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FIG. 10. Contribution of the evanescent fields to the band dispersion of a 3D lattice. a) Regimes where the
band is either invertible (blue region) or not (green region), as a function of the aspect ratio dz/d and the longitudinal lattice
constant dz/λ0. The data are calculated by fully numerically computing the dispersion relation J(kz) and explicitly looking
for local maxima at some |kz| < π/dz. The white, dashed line represents the analytic bound of Eq. (A2). b) Ratio between the
evanescent and radiative contributions to the band structure, i.e. |Jev/J1D|, calculated at kz = π/dz. The dashed, white line
is the same invertibility boundary as before, which is equivalent to |Jev/J1D| <∼ 1/2. The solid, white line shows the analytic

prediction for the threshold where |Jev/J1D| ≤ 10−2. In both plots the value of Jev is computed numerically from its exact
formula of Eq. (9).
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FIG. 11. Plot of the resonant susceptibility of the selectively driven atom χ0 = χ(0, δ = ω(0)) versus d/λ0 (lattice constant
normalized by resonant wavelength). The blue points (green triangles) represent, in log-log scale, the value of its imaginary (real)
part, while the dashed blue and green lines show the asymptotic scalings Im χ0/Γ0 ∼ 187(d/λ0)3 and Re χ0/Γ0 ∼ 24(d/λ0)3.
On the top y-axis, we also label the corresponding ratio of lattice constant to Bohr radius d/a0, assuming that the resonant
wavelength λ0 is taken to be that of the hydrogen atom.

We thus calculate the ratio between the evanescent Jev(kz) and the radiative J1D(kz) = sin(k0dz)/[cos(kzdz) −
cos(k0dz)] contributions. This quantity in principle depends on the wavevector kz, so we consider the maximum
value maxkz |Jev/J1D|. When dz � λ0, this ratio is maximized by kz = π/dz and it reads max |Jev/J1D| ≈
(λ0/dz)

2
B(dz/d)/π. Comparing this with Eq. (A2), one can deduce that the band becomes non-invertible if

|Jev/J1D| >∼ 1/2. In Fig. 10b, we represent the value of this maximum ratio as a function of the aspect ratio dz/d
and lattice constant d. The black region represents the regime where |Jev/J1D| ≥ 10−2, which allows us to ignore the
evanescent contribution. For our choice of the aspect ratio dz/d = 2.5, this is true as long as d/a0

>∼ 6.

Appendix B: Susceptibility of a distinguishable atom

In this appendix, we detail how to numerically calculate the susceptibility χ(rj−rh, δ) = cj(δ)/Ωh from the steady-
state solutions cj(δ) of an infinite 2D array of lattice constant d, where one atom at position rh is selectively driven
by a near-resonant Rabi frequency Ωh, detuned by a factor δ = ωL − ω0. We recall that the atomic wave function

is given by |ψ2D(t)〉 = cG(t)|G〉 +
∑
j cjb

†
pjbsj |G〉, and the other atoms rj 6= rh can still be excited via dipole-dipole

interactions with the driven atom, via Eq. (1).
We numerically simulate a finite 2D square array of lateral size 2l and lattice constant d. For simplicity, the

selectively driven atom is placed at the center rh = 0. To mimic the infinite size of the array, we introduce an

additional non-Hermitian term to the Hamiltonian, Hnr = −(i/2)
∑
j Γ′cut−off(rj)b

†
pjbpj . This term adds an extra

non-radiative decay to the excited p-orbitals, which has a smooth position dependence Γ′cut-off(R =
√
x2
j + y2

j ), and

its purpose is to smoothly dissipate energy that propagates outward along the array towards the boundaries in order
to suppress multiple reflections at the boundaries. Specifically, we define

Γ′cut-off(R) =


0 if R ≤ Rcut-off

3Γ(0)

(
R−Rcut-off

Rcut-off/2

)2

if R > Rcut-off

. (B1)

On top of that, we fix R ≤ l = (3/2)Rcut-off. This way, Γ′cut−off(Rcut−off) = 0 and Γ′cut-off(l) = 3Γ(0) at the boundaries
R = l. The fact that the dissipation is zero around the position of the driven atom rh = 0, and smoothly growing
for increasing R, makes the numerically calculated susceptibility essentially independent of the details of the added
decay.
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FIG. 12. Behavior of the hopping dynamics due to Ht, depicted as a Bethe lattice. Evolution of the initial excited
p-orbital |0〉, to states |nab...〉. Here, the non-negative integer n denotes the number of hops, while a, b, ... ∈ {U,D,L,R} denotes
the direction (up, down, left, right) of each hop.

Due to the finite size of the system, we are effectively computing the optical response by discretely sampling Bloch
wavevectors, rather than accounting for the full continuum. The smallest wavevector that we are implicitly considering
can be roughly estimated by |kmin

xy | ≈ π/Rcut−off . We thus impose in our numerics that Rcut−off ≥ λ0/2, aiming to
well capture at least those modes outside the light cone |kxy| = k0. For lattice constants as small as d ' λ0/400, this
condition implies atomic numbers as large as N ≈ 4× 105, which represents the maximal size that we can simulate.
For larger lattice constants d >∼ λ0/150, however, our numerics can tolerate larger systems, and in that case we impose
N ≥ 4× 104, to reduce the extent of our numerical approximations.

Our results are exemplified in Fig. 11, where we numerically calculate the resonant susceptibility of the selectively
driven atom χ0 = χ(0, δ = ω(0)), as a function of lattice constant d. Specifically, the blue points and the green
triangles show the imaginary and real part of χ0, along with their asymptotic values Im χ0/Γ0 ∼ 187(d/λ0)3 (dashed
blue line) and Re χ0/Γ0 ∼ 24(d/λ0)3 (dashed blue line), which confirm the scaling χ0 ∼ Γ0(d/λ0)3 for small d.

Appendix C: Hopping on a Bethe lattice

In this section, we derive the contribution to the self-energy Σt(δ) ≈ −4iteff of the excited state |Ekxy=0〉, which
arises from the dynamics of the p-orbital hopping Ht. As can be seen from Eqs. (47) and (48) in the main text,
the states involved in up to n = 2 hops are orthogonal due to their different spin backgrounds, and can be labeled
according to the original position (when n = 0) rj of the p-orbital, the four possible moves δ1 = ±dx̂,±dŷ to a nearest
neighbor at n = 1, and the three possible moves (besides returning to rj) δ2 6= δ1 at n = 2. As the dynamics under Ht

is the same for each rj up to translation, in what follows we will forget about this label and simply denote the initial
position as |0〉. For visualization, as in Fig. 12, we will also switch to the labels U,D,L,R (up, down, left, right) for
the possible values of δi. Fig. 12 thus shows how Ht has matrix elements (green arrows) between the initial state |0〉
and the superposition state |1〉 = (1/2)(|1U 〉+ |1D〉+ |1L〉+ |1R〉) following n = 1 hops, and how |1〉 is connected in
turn by Ht to the various configurations |2ab〉 (with a, b ∈ {U,D,L,R}) comprising the state |2〉. The corresponding

matrix elements are 〈1|Ht|0〉 = −2teff and 〈2|Ht|1〉 = −
√

3teff .

While this description up to n = 2 is exact, a standard approximation for larger n is to assume that the nature of the
hopping from |1〉 to |2〉 generalizes to any |n〉 to |n+1〉 [38, 39]. In particular, one assumes that Ht connects a particular
configuration |nab...〉 to three possible new configurations |(n + 1)ab...〉, and furthermore that all possible generated

states have orthogonal spin backgrounds, i.e. the configurations satisfy the orthogonality condition 〈mab···|na′b′···〉 =
δm,nδa,a′δb,b′δ···. This makes the problem equivalent to hopping on a so-called Bethe lattice [40].
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Within this approximation, the Hamiltonian Ht takes the form

Ht ≈ HBethe ≡ −2teff |1〉 〈0| −
√

3teff

∑
n>0

|n+ 1〉 〈n|+ h.c., (C1)

where we define the normalized states |n〉 =
∑
ab...

∣∣nab...〉 /(2√3n−1), which are an equal superposition of all possible
configurations at a given n. The eigenenergies and eigenstates of HBethe can be written in the form

E(θ) = −2
√

3teff cos(θ),

|ψ(θ)〉 =

√
2

π

[√
3

2
sin(γ) |0〉+

∞∑
n=1

sin(nθ + γ) |n〉

]
,

(C2)

where tan(γ) = 2 tan(θ). The density of states can be also calculated, obtaining the value [38, 40]

ρ(E) =
2

πteff

√
24− (E/teff)2

16− (E/teff)2
= − 3

2π
sin2(γ)

dθ

dE
. (C3)

Starting from the quasi-bound state |0〉 initially, the decay rate ΓBethe out of this state into the continuum of the
band can be estimated by Fermi’s golden rule:

ΓBethe

teff
=

2π

teff

∫ 2
√

3teff

−2
√

3teff

dE ρ(E) |〈ψ(E)|HBethe |0〉|2 =
24

π

∫ π

0

dθ sin2(γ) sin2(θ + γ)

=
864

π

∫ 1

0

du

√
u3(1− u)

(1 + 3u)2
= 8.

(C4)

This allows us to define the contribution to the self-energy of the state |Ekxy=0〉 as Σt(δ) ≈ −4iteff.

Appendix D: Fresnel equations of classical optics

In the main text, we calculated the refractive index (51) for a 3D lattice via a Bloch band structure calculation (with
the phenomenological loss term Γ′ = 0 set to zero for this discussion). In this appendix, we prove that this definition
of index correctly reproduces various predictive properties of optical response, within classical macroscopic electro-
dynamics. In particular, we on one hand will calculate by microscopic approaches the reflection and transmission
through a finite-length 3D system, and on the other hand see that this agrees with the standard Fresnel equations for
a dielectric slab.

First, we recall that from the standpoint of classical macroscopic electrodynamics, given a dielectric slab of length
L and (complex) refractive index n(δ), the Fresnel equations predict

tFr(n) =
4neink0L

(1 + n)2 − e2ink0L(n− 1)2
, rFr(n) =

(n2 − 1)
(
e2ink0L − 1

)
(1 + n)2 − e2ink0L(n− 1)2

. (D1)

We now consider a 3D crystal composed of a number M of 2D atomic arrays, separated by the distance dz and illumi-
nated at normal incidence. In the regime where the evanescent field can be neglected, each 2D array is characterized
by the reflection and transmission coefficients r(δ) = iΓ(0)/[−2δ + 2ω(0) + 2ΣQC(δ)− iΓ(0)] and t(δ) = 1 + r(δ). To
our analysis, it is convenient to write r(δ) and t(δ) as functions of the index n(δ) = kz(δ)/k0. This is accomplished by
using Eq. 51 to replace the dependence on δ with that on n, thus obtaining the functions r(n) and t(n). The multiple
scattering problem through multiple layers reduces to a 1D problem that can be efficiently and exactly solved by the
transfer-matrix formalism [53], yielding

tM (n) =
eik0dz t(n)

uM (n)− eik0dz t(n)uM−1(n)
, rM (n) =

e2ik0dzr(n)uM (n)

uM (n)− eik0dz t(n)uM−1(n)
, (D2)

where we define the function uM (n) = sin(Mnk0dz)/ sin(nk0dz). Starting from Eq. D2, we define the total length L
and replace the number of layers with M → L/dz. Eventually, we can expand the resulting expressions as a Taylor
series in k0dz � 1, with the supplementary assumption that |n(δ)k0dz| < 1, but also keeping in mind that k0L can be
arbitrarily large. By performing such Taylor expansion, one recovers the Fresnel predictions of Eq. D1, at the zeroth
order in k0dz � 1.
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Appendix E: Minimum losses and maximal real index

In this appendix, we prove the scaling of the minimum imaginary part of the index, given a target real part
(optimizing over δ and d), as a function of Γ′. Starting from Eq. (51), one can derive the equation

2δ̃ +
γ̃′ cos(k0dz)

sin(k0dznre) sinh(k0dznim)
= γ̃′ cot(k0dznre) coth(k0dznim), (E1)

where δ̃ = [δ−ω(0)−Re ΣQC(δ)]/Γ(0) and γ̃′ = [Γ′−2Im ΣQC(δ)]/Γ(0). We are interested in the regime of low losses

k0dznim � 1, in which we can solve Eq. (E1), obtaining nim ≈ γ̃′[cos(k0dznre) − cos(k0dz)]/[2k0dz δ̃ sin(k0dznre)]
Looking at the numerical optimization of minnim, one can observe that the minimal losses are always obtained when
the lattice constant is roughly fixed at the edge of quantum chemistry, i.e. d ≈ dQC ≈ 15a0, which indeed minimizes
the parameter γ̃′ in Eq. (51). Given d = dQC, the value of nre is varied by changing δ on a fixed curve. As we are

interested in the regime of low losses nim � 1 and negligible quantum chemistry, we can then approximate δ̃ with the
band structure at d = dQC (i.e. its analytic solution for a lossless system), reading

δ̃ ≈
(

1

2

)
sin(k0dz)

cos(nrek0dz)− cos(k0dz)
+O

(
nim

nre

)2

, (E2)

which proves to be a good approximation as long as nim � nre. Then, after expanding for k0dz � 1 (which is valid
only as long as nrek0dz < 1), one obtains

nim ≈
Γ′

Γ0

(
dz
d

)(
k3

0d
3
QC

12π

)(
1

nre
− 2nre + n3

re

)
, (E3)

where we use the fact that d = dQC ≈ 15a0 (i.e. before quantum chemistry) to approximate γ̃′ ≈ Γ′/Γ(0).

Appendix F: Recovering Drude-Lorentz due to quantum chemistry

At high densities, the losses introduced by quantum chemistry strongly suppress the effects of multiple scattering,
preventing the appearance of ultra-high indices. In that regime, one expects that usual mean-field theories (such as
Drude-Lorentz) can well describe the physical phenomena. Specifically, we are interested in a system which exhibits
one single, dominant resonance ωres, and which is illuminated by near-resonant light with |ωL − ωres| � ωres. In this
limit, the Drude-Lorentz model predicts the index

n =

√
1 +

fresω
2
P

ω2
res − ω2

L − iγ′ωL
≈

√
1− fresω

2
P/ωres

2(ωL − ωres) + iγ′
, (F1)

where ωP and γ′ are respectively the plasma frequency and the damping rate, while fres is the so-called oscillator
strength which depends on the choice of the resonant transition. Here, we show that the refractive index of an atomic
lattice, as predicted by Eq. (51), reduces to Eq. (F1) at high densities, due to the losses induced by quantum
chemistry. To this aim, we first re-write Eq. (51) as

cos(k0dzn(δ)) = cos(k0dz) +
Γ(0) sin(k0dz)

2δ − 2ω(0)− 2ΣQC(δ) + iΓ′
. (F2)

At low lattice constants, we can expand this equation up to the second order in k0dz � 1. To do so, one needs
to fulfill the condition |k0dzn(δ)| < 1, which is guaranteed by the suppression of multiple scattering induced by
−2Im ΣQC(δ) >∼ Γ(0) > Γ0 (this also guarantees the closure of the optical bandgap). This procedure permits to directly
recover Eq. (F1), by defining ωres = ω0 + ω(0) + Re ΣQC(δ), γ′ = Γ′ − 2Im ΣQC(δ) and fresω

2
P/ωres = 2Γ(0)/(k0dz).

To make the last expression more meaningful, we can approximate ωres ≈ ω0 and evaluate the right-hand side taking
the parameters of the hydrogen atom. This gives the standard formula for the plasma frequency, ωP =

√
Nq2/(mε0V ),

and fres ≈ 0.21. Within the limits studied here, we note that the typically phenomenological decay rate γ′ appearing
in the Drude-Lorentz model can be quantitatively connected to specific quantum mechanical processes as encoded in
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the imaginary part of the self-energy ΣQC(δ).
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