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Abstract
As a platform for optoelectronic devices based on exciton dynamics, monolayer transition metal
dichalcogenides (TMDCs) are often placed near metal interfaces or inside planar cavities. While
the radiative properties of point dipoles at metal interfaces has been studied extensively, those of
excitons, which are delocalized and exhibit a temperature-dependent momentum distribution,
lack a thorough treatment. Here, we analyze the emission properties of excitons in TMDCs near
planar metal interfaces and explore their dependence on exciton center-of-mass momentum,
transition dipole orientation, and temperature. Defining a characteristic energy scale
kBTc = (!k)2/2m (k being the radiative wavevector and m the exciton mass), we find that at
temperatures T ≫ Tc and low densities where the momentum distribution can be characterized by
Maxwell–Boltzmann statistics, the modified emission rates (normalized to free space) behave
similarly to point dipoles. This similarity in behavior arises due to the broad nature of wavevector
components making up the exciton and point dipole emission. On the other hand, the narrow
momentum distribution of excitons for T < Tc can result in significantly different emission
behavior as compared to point dipoles. These differences can be further amplified by considering
excitons with a Bose Einstein distribution at high phase space densities, such as in a condensate
phase. We find suppression or enhancement of emission relative to the point dipole case by several
orders of magnitude. These insights can help optimize the performance of optoelectronic devices
that incorporate 2D semiconductors near metal electrodes and can inform future studies of
exciton radiative dynamics at low temperatures. Additionally, these studies show that nanoscale
optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.

1. Introduction

Excitons in two-dimensional quantum wells are widely utilized in optoelectronic technologies [1, 2] and in
studies of bosonic superfluidity and condensation [3–5]. In particular, excitons in monolayer transition
metal dichalcogenides (TMDCs) have attracted significant recent interest due to their large binding
energies, which enable condensed and superfluid phases to emerge at high temperatures, and their strong
oscillator strength, which provides a strong, coherent optical response to near-resonant light [1, 4]. These
properties, combined with the fundamentally extended nature of the center-of-mass wave function, can give
rise to interesting functionalities, such as tunable, atomically thin reflecting elements [6–9].

Engineering exciton lifetimes with nanostructures can advance numerous applications such as
integration with electrically tunable interlayer exciton systems or studies of quantum phases [3, 5, 10].
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Certainly, the ability to modify emission of point-like emitters has been well-studied, and forms the basis of
important applications such as quantum information processing [11–14] and single-molecule detection
[15, 16]. However, the principles and intuition developed for point emitters do not necessarily apply to
excitons, which, in contrast to point dipoles, are fundamentally delocalized excitations with a
temperature-dependent momentum distribution. Indeed, significant modification of exciton emission near
metallic planar mirrors was recently demonstrated experimentally [7], where it was also noted that this
behavior differed from that expected of a point dipole. The emission properties might also become richer
due to the ability to form exciton condensates. In particular, long exciton lifetimes can be achieved in
quantum well heterostructures, in which the electron and hole wavefunctions are physically separated,
which suppresses radiative recombination and allows for the creation of a thermalized, high density gas [3].
These interlayer systems have the same selection rules as monolayer TMDCs, with circularly polarized,
in-plane transitions [17, 18]. Recently, these thermalized, high density exciton ensembles have shown
experimental signatures of Bose-condensed phases with a non-classical occupation of low momentum states
[4, 5]. Importantly, these TMDC heterostructures and other quantum well systems are frequently placed in
close proximity to metal films, which are utilized as gate electrodes or as plasmonic substrates [3, 19]. For
point dipoles, this proximity creates non-radiative quenching that exponentially increases with proximity to
the metal, limiting optical applications that rely on high radiative efficiency [20]. Alternatively, the
temperature dependent wavevector distribution of excitons might allow one to avoid detrimental quenching
processes.

Here, our goal is to develop a model for the emission properties of excitons in the vicinity of planar
dielectric environments, under the assumption that the center-of-mass momentum exhibits a thermal
distribution. Specifically, we focus on two planar geometries, a single planar metal interface and a planar
metal cavity, and theoretically study their impact on the radiative dynamics of excitons in monolayer
TMDCs or van der Waals heterostructures composed of monolayer TMDCs. Our model accounts for
several factors, such as the Bose–Einstein (BE) distribution of exciton momentum, the distance between the
TMDC and the interface(s), and the orientation (in- or out-of-plane) of the dipole orientation. In
particular, excitons in TMDCs are referred to as bright or dark depending on their optical selection rules
[19, 21], with bright (dark) having in-plane (out-of-plane) orientation. Depending on the type of TMDC,
either the bright (such as MoSe2 and MoS2) or dark exciton (WSe2 and WS2) can be the lowest energy and
constitute the dominantly occupied state. We point out that the methods we develop are quite general and
can be readily applied to a broad range of quantum well systems beyond TMDCs, including those with
type-I and type-II excitations [22]. With knowledge of the effective mass and dipole orientation of the
excitons, we can predict modifications to the radiative dynamics of thermalized excitons for arbitrary
quantum wells.

The rest of the paper is organized as follows. In section 2, we introduce the theoretical formalism to
calculate modified spontaneous emission rates in terms of the total field seen by classical radiating point or
extended ‘planar’ dipoles at their own locations. In the latter case, which is valid to describe extended
excitons, the emission rate is calculated as a function of center-of-mass momentum Q. In section 3 we apply
this general formalism to derive specific rates in the vicinity of a single interface and in a planar cavity. In
section 4, we introduce our model for the temperature dependent emission rate of an extended exciton,
assuming that the center of mass momentum is characterized by a BE distribution to allow for condensed
phases. In sections 5 and 6, we present numerical results for the temperature and distance-dependent
emission rates for a single interface and cavity, specifically considering a silver structure. For a distribution
at low phase space density (i.e. a Maxwell–Boltzmann (MB) distribution or the limit of a single exciton), we
show that the emission rate (normalized to that of free space at the same temperature) approaches that of a
point dipole at high temperatures T ≫ Tc, where kBTc = (!k)2/2m (k = 2π/λ being the radiative
wavevector and m the exciton mass). In the opposite limit of T ! Tc, the behavior can significantly differ
from a point dipole. This difference is clearest at close distances to the interface (d ! λ/2π), as the narrow
momentum distribution highly suppresses non-radiative emission, and at large distances when this narrow
distribution is able to resolve the resonances of the cavity structure. Although Tc ∼30 mK can be quite low
for experimental realization, at high phase space densities, the narrow momentum distribution arising from
condensation allows for such changes in emission to be observed even at relatively high temperatures
(∼5 K). In section 7 we provide a brief conclusion and outlook of our work.

2. Theoretical formalism

In this section, we briefly review the theory by which modified spontaneous emission rates can be
calculated. We first begin with the better known case of a point dipole, before presenting the ‘planar’ dipole

2



New J. Phys. 24 (2022) 023015 G H Chen et al

Figure 1. (a) Point dipole with in-plane polarization, at a distance z0 above a silver interface. (b) Point dipole with in-plane
polarization, located symmetrically between a silver cavity with spacing d between mirrors. (c) Planar dipole with in-plane
polarization at a distance z0 above a silver interface. (d) Planar dipole with in-plane polarization, located symmetrically between
a silver cavity. The emitted light in all cases can be decomposed into different wavevectors whose directions are indicated by the
black arrows (showing both incident and scattered fields from the surface), while the red arrows and red circles denote the
polarizations associated with s- and p-polarized light. Analogously, we also consider the case of dipoles with out-of-plane
polarization (not illustrated).

used to model an extended exciton. We present the geometry for each structure in the point and planar
dipole cases in figure 1.

2.1. Point-dipole emission rates
The point dipole case is particularly prevalent in quantum optics, accounting for the modification of
spontaneous emission of individual atoms, molecules or other point-like quantum emitters in the vicinity
of planar interfaces [20, 23], planar cavities [24], or other resonant or confining structures for light
[25–27].

We consider a two-level system with an electric dipole allowed transition of frequency ω and
corresponding free-space wavelength λ. We assume that its immediate vicinity is characterized by a relative
permittivity ϵ1, but allow for the possibility of other dielectric media nearby, which might modify its
emission rate. In the weak-coupling regime (to be defined shortly), the modified emission rate, Γ,
normalized by the emission rate Γ0 in an infinite medium of permittivity ϵ1, is given by [20, 28, 29]:

Γ

Γ0
=

Im [p∗ · E(r0)]
Im [p∗ · Efree(r0)]

. (1)

Here, p e−iωt is a classical oscillating point dipole representing the two-level system, E(r0)e−iωt is the total
field produced by the dipole in the geometry of interest at its own location r0 = (0, 0, z0), and Efree(r0) is the
field of the dipole in a uniform medium with a relative permittivity of ϵ1. The validity of this weak-coupling
approach requires that the response of the electromagnetic environment itself does not appreciably vary
over Γ itself. Otherwise, non-exponential or strong coupling dynamics like vacuum Rabi oscillations can
occur [30].

While equation (1) is general, we now describe an efficient method to calculate the total field E for
planar geometries. We outline the calculations for a point dipole with arbitrary orientation, and for
convenience define the corresponding current density J(r) = −iωδ(r − r0)p. We first define the in-plane

3



New J. Phys. 24 (2022) 023015 G H Chen et al

wavevector k∥ = (kx, ky), and generalizing for later discussions, the dispersion relation in medium i of

k2
∥ + k2

z,i = ϵi
(
ω
c

)2 ≡ k2
i . The free field in an infinite medium with permittivity ϵ can be expressed as:

Efree(r) = iωµ0

∫
dr′Gfree(r, r′) · J(r′). (2)

For planar geometries, it is useful to express the dyadic Green’s function in a plane wave representation:

Gfree(r, r′) =
i

8π2

∫
d2k∥M(k∥)ei(k∥·(ρ−ρ′)+kz |z−z′|) (3)

and:

M(k∥) =

(
1

kzk2

)
⎛

⎜⎝

k2 − k2
x −kxky ∓ kxkz

−kxky k2 − k2
y ∓ kykz

∓ kxkz ∓ kykz k2 − k2
z

⎞

⎟⎠ . (4)

(Note that the upper sign is for z > z0 and the lower sign for z < z0) [29]. For the point dipole, this
expression for the field simplifies to:

Efree(r) =
1

4π2

∫
d2k∥E(k∥)ei(k∥·ρ+kz |z−z0|) (5)

where

E(k∥) =
iω2µ0

2
M(k∥) · p (6)

gives the polarization and amplitude of each plane wave component.
To calculate the total field, we write it as a sum of free and scattered contributions,

E(r) = Efree(r) + Esc(r) and solve for the latter. For concreteness, we will focus on two cases, consisting of a
single dielectric interface (figure 1(a)) and a symmetric cavity configuration (figure 1(b)). For the single
interface, we consider that the point dipole is situated at a position r0 (with z0 > 0) in a medium with
permittivity ϵ1, and calculate the reflected field from an interface with a material with permittivity ϵ2, with
the boundary between the two media situated at z = 0. For an arbitrarily polarized point dipole p, it is
useful to decompose the fields into s- and p-polarizations to calculate the reflected (i.e. scattered) fields. We
decompose the matrix M(k∥) = M(s)(k∥) + M(p)(k∥) where:

M(s)(k∥) =

(
1

kz,1k2
∥

)⎛

⎜⎝

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎞

⎟⎠ (7)

M(p)(k∥) =

(
1

k2
1k2

∥

)
⎛

⎜⎜⎜⎜⎝

k2
xkz,1 kxkykz,1 ∓ kxk2

∥

kxkykz,1 k2
ykz,1 ∓ kyk2

∥

∓ kxk2
∥ ∓ kyk2

∥
k4
∥

kz,1

⎞

⎟⎟⎟⎟⎠
(8)

gives the decomposed matrices for the incident fields and

M(s)
R (k∥) =

(
1

kz,1k2
∥

)⎛

⎜⎝

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎞

⎟⎠ (9)

M(p,± )
R (k∥) =

(
− 1

k2
1k2

∥

)
⎛

⎜⎜⎜⎜⎝

k2
xkz,1 kxkykz,1 ± kxk2

∥

kxkykz,1 k2
y kz,1 ± kyk2

∥

∓ kxk2
∥ ∓ kyk2

∥ ∓
k4
∥

kz,1

⎞

⎟⎟⎟⎟⎠
(10)

gives the decomposed matrices for the reflected fields [29]. Note that in the p-polarized reflection matrix,
the ± superscript denotes the propagation direction of the reflected field. For the geometry in figure 1(a),
the reflected field propagates upward and corresponds to the choice +.
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For the single interface, the reflected field at the location of the point dipole is:

Esc(r0) =
1

4π2

∫
d2k∥Esc(k∥)e2ikz,1z0 (11)

where

Esc(k∥) =
iω2µ0

2

[
rs(k∥)M(s)

R (k∥) + rp(k∥)M(p,+)
R (k∥)

]
· p. (12)

The reflection coefficients of a plane wave from a planar interface rs,p(k∥) are given by [29, 31]:

rs(k∥) =
kz,1 − kz,2

kz,1 + kz,2
rp(k∥) =

ϵ2kz,1 − ϵ1kz,2

ϵ2kz,1 + ϵ1kz,2
. (13)

One can now substitute the total (free plus scattered) field into equation (1) to calculate the modified
emission rate at a single interface. We consider two specific orientations of the point dipole: in-plane
(p = (px, py, 0)) and out-of-plane (p = (0, 0, p)) to the interface. The total emission rate for an in-plane
dipole is:

Γ(z0)
Γ0

= 1 +
3

4k1
Re

[∫ +∞

0
dk∥

[(
k∥
kz,1

)
rs(k∥) −

(
k∥kz,1

k2
1

)
rp(k∥)

]
e2ikz,1z0

]
. (14)

For an out-of-plane dipole, the total emission rate is:

Γ(z0)
Γ0

= 1 +
3

2k3
1

Re

[∫ +∞

0
dk∥

(
k3
∥

kz,1

)
e2ikz,1z0 rp(k∥)

]
(15)

and we note that this dipole orientation only contains p-polarized components.
For the cavity structure, we consider a dipole at z0 = 0 in medium 1 with permittivity ϵ1, which is

symmetrically located between two media of permittivity ϵ2 and where the distance between their two
interfaces is given by d (figure 1(b)). The techniques described above can easily be generalized here. We
again write the total field as E(r) = Efree(r) + Esc(r). The scattered field can be obtained from the reflected
field of a single interface, by summing its propagation and multiple reflection to all orders. At the position
of the dipole, one finds:

Esc(r0) =
1

4π2

∫
d2k∥

(
E+

sc (k∥) + E−
sc(k∥)

)
eikz,1d/2. (16)

The scattered field components are given by

E±
sc(k∥) =

iω2µ0

2

[(
rp eikz,1d/2

1 + rp eikz,1d

)
M(p,± )

R (k∥) +

(
rs eikz,1d/2

1 − rs eikz,1d

)
M(s)

R (k∥)

]
· p (17)

for an in-plane dipole, while for an out-of-plane dipole,

E±
sc(k∥) =

iω2µ0

2

[(
rp eikz,1d/2

1 − rp eikz,1d

)
M(p,± )

R (k∥)

]
· p. (18)

From equation (1), the corresponding emission rate for the in-plane dipole in the cavity is:

Γ(d)
Γ0

= 1 +
3

2k1
Re

[∫ +∞

0
dk∥

[
k∥
kz,1

(
rs

1 − rs eikz,1d

)
− k∥kz,1

k2
1

(
rp

1 + rp eikz,1d

)]
eikz,1d

]
. (19)

Similarly, for the out-of-plane dipole,

Γ(d)
Γ0

= 1 +
3
k3

1
Re

[∫ +∞

0
dk∥

(
k3
∥

kz,1

)
eikz,1d

(
rp

1 − rp eikz,1d

)]
. (20)

2.2. Plane-dipole emission rates
While the point-dipole model accurately describes a number of quantum optical emitters, it is not
necessarily suitable to model an exciton with a delocalized center of mass coordinate, nor the possible
dependence of emission on the center of mass temperature. Defining Q = (Q x, Q y) as the in-plane,
center-of-mass momentum Q of the exciton, the emitted photon will necessarily have the same in-plane
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momentum in addition to an out-of-plane momentum component that we denote by Q 2
z = k2

1 − Q2. In
analogy to the point dipole case, the spontaneous emission can be calculated by modeling the extended
exciton as a planar dipole, with current density [7, 19]

J(r) = J0δ(z − z0)eiQ·ρ e−iωt . (21)

Here, ρ denotes the in-plane coordinate, while z0 is the position of the planar dipole along z. This form of
the current density assumes that the exciton can only move in the monolayer. The spontaneous emission
rate of the exciton of momentum Q is given by

Γ(Q) = − α

|J0|2
Re

[∫
drJ†(r) · E(r)

]
. (22)

Here, α is a geometry-independent coefficient, which only depends on the microscopic properties of the
exciton. For a point dipole, a natural choice to remove this coefficient is made by normalizing the emission
rate relative to a uniform medium, as in equation (1). For an extended exciton, however, we will soon see
that an analogous choice can be problematic, and we will present several complementary possibilities.

To illustrate how the emission of an exciton differs from a point dipole, we begin by recovering
well-known results [32] regarding radiative emission of an exciton in a uniform medium of permittivity ϵ1.
In that case, we can exploit equations (2)–(4) to find the free (and total) field,

E(r) = Efree(r) = −ωµ0

2
ei(Q·ρ+Q z|z−z0|) e−iωtM(Q) · J0. (23)

First, we can consider an exciton with a circular, in-plane transition, corresponding to
J0 = J0σ̂± = J0√

2
(x̂ ± iŷ) (where the sign difference corresponds to left-handed or right-handed

polarization). In that case, a natural choice to normalize emission rates is relative to the emission rate of a
stationary exciton in the uniform medium, which from equation (22) yields:

Γ0(Q )
Γ0(Q = 0)

=
1
2

[
Q 2

z + k2
1

Q zk1

]
(24)

for Q z < k1, and Γ0(Q ) = 0 otherwise. Here, the subscript in Γ0(Q ) refers to the emission in a uniform
medium. Notably, the above result shows that the exciton can only radiate when its momentum can match
that of a propagating photon.

On the other hand, for an out-of-plane transition, J0 = J0ẑ, one finds

Γ0(Q ) =
αωµ0

2k1

(
Q 2

k1Q z

)
(25)

for Q z < k1, and Γ0(Q ) = 0 otherwise. Unlike the in-plane exciton, a stationary out-of-plane exciton is
dark, Γ0(Q = 0) = 0, so the previous normalization procedure cannot be applied here. One practical and
experimentally meaningful way to normalize can be to consider a non-zero motional temperature for the
momentum Q, and calculating the thermally averaged emission rate, which we will introduce later.

The calculation of the spontaneous emission rate of an exciton near a planar interface (figure 1(c))
proceeds in an analogous fashion to the point dipole. It can readily be shown that for an in-plane, circularly
polarized transition, the total emission rate is given by

Γ(Q , z0)
Γ0(Q = 0)

=
1
2

(
Q 2

z,1 + k2
1

Q z,1k1
+ Re

[
−Q z,1

k1
rp e2iQ z,1|z0|

]
+ Re

[
k1

Q z,1
rs e2iQ z,1|z0|

])
, (26)

where we have normalized the emission rate by that of a stationary exciton in the uniform medium. For the
out-of-plane exciton, the total emission rate is:

Γ(Q , z0) =
αωµ0

2k1

(
Q 2

k1Q z,1
+ Re

[
rp

Q 2

k1Q z,1
e2iQ z,1|z0|

])
. (27)

Likewise, in the cavity structure illustrated in figure 1(d), the emission rate for an in-plane, circularly
polarized transition is

Γ(Q , d)
Γ0(Q = 0)

=
1
2

[
(Q z,1)2 + k2

1

Q z,1k1
+ Re

[(
k1

Q z,1

)
2rs eiQ z,1d

1 − rs eiQ z,1d

]
+ Re

[
−
(

Q z,1

k1

)
2rp eiQ z,1d

1 + rp eiQ z,1d

]]
, (28)

6
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while for the out-of-plane transition,

Γ(Q , d) =
αωµ0

2k1

(
Q 2

k1Q z,1
+ Re

[(
Q 2

k1Q z,1

)
2rp eiQ z,1d

1 − rp eiQ z,1d

])
. (29)

3. Results: modified emission by silver interface and cavity

3.1. Point dipole
With the preceeding formalism, we now consider the modified emission rates of point dipoles in the planar
structures detailed in figure 1. In the calculations of the main text, we consider metal interfaces of silver,
while the results for several other metals are presented in the appendix (http://stacks.iop.org/NJP/24/
023015/mmedia). We take the permittivity of silver to be ϵs = −27.397 + 0.896i [33], which is accurate at
the wavelength of the neutral exciton transition in MoSe2 (λ = 755 nm) [19]. For simplicity, we consider
the dielectric medium that surrounds the exciton to be vacuum (ϵ1 = 1).

In the single-interface case, the reflection coefficient rp(k∥) (equation (13)) contains a pole if ϵs is
negative, corresponding to a surface plasmon polariton (SPP) mode with in-plane wavevector
component [34]

kSPP =

√
ϵ1ϵs(ω)

ϵ1 + ϵs(ω)
≈ 1.019k1 (30)

for the silver parameters given above. For the symmetric silver cavity, the SPP wavevector is given by the
solution to

1 − r2
p(kSPP)e2ikz,1d = 0. (31)

We plot the solutions for kSPP as a function of the cavity separation d in figure 2(a).
In figure 2(b), we plot the modified emission rates for the in-plane and out-of-plane point dipoles at a

single silver interface (equations (14) and (15)), as a function of distance z0. At large distances, the emission
rate behavior is oscillatory, resulting from interference between the emitted and reflected fields. Moreover,

the short distance (z0 → 0) behavior scales as Γnr/Γ0 ∝
(

1
z3

0

)
· Im

[
ϵs−1
ϵs+1

]
. This emission is non-radiative,

and emerges from the near-field component (1/z3
0) of the dipole field. It also requires the permittivity of the

silver to have an imaginary part, reflecting the energy loss produced by Ohmic dissipation of the induced
currents in the silver. Mathematically, this contribution arises from the large k∥ > k1 tails of the integrands
in equations (14) and (15). At intermediate distances, the out-of-plane dipole emits significantly into the
SPP modes, due to the purely p-polarized nature of both the dipole radiation and the SPP modes. Assuming
that ϵs is real and evaluating the pole contribution to equation (15) gives:

ΓSPP

Γ0
≈ 1 − 3πk3

SPP

ϵ3/2
1 k2

1

√
k2

SPP − k2
1

Re

[
ϵ3/2

s√
1 + ϵs(1 + ϵ2

s )

]
e−2|kz,SPP|z0 . (32)

We plot the modified emission rate versus d for the cavity in figure 2(c). In this case, the in-plane dipole
exhibits regions of enhancement and suppression with a saw-tooth behavior, in agreement with the
well-known results for electric dipole transitions [24]. Coupling to SPP modes is prohibited for the in-plane
dipole for this symmetric cavity geometry. For the out-of-plane orientation, a large enhancement of
emission is observed at short distances d/λ ! 0.5, which is attributable to the SPP modes. The approximate
SPP emission rate can be calculated in the near-field (d → 0) limit, where the SPP wavevector can be
approximated as:

kSPP ≈ ln

[
ϵs − ϵ1

ϵs + ϵ1

]
1
d
. (33)

The corresponding tight field confinement and small mode volume at small d give rise to a significantly
enhanced decay rate into SPPs:

ΓSPP

Γ0
≈ 3π

(k1d)3
Re

[
ln2

[
ϵs − ϵ1

ϵs + ϵ1

]]
. (34)

Similar to the single-interface analysis, at short distances d → 0 both dipole orientations also experience a
non-radiative emission rate that scales like Γnr ∝ (Im ϵs)/d3 due to Ohmic dissipation. However, this
contribution always remains smaller than the SPP emission for the out-of-plane dipole, which also has a
1/d3 scaling.

7

http://stacks.iop.org/NJP/24/023015/mmedia
http://stacks.iop.org/NJP/24/023015/mmedia


New J. Phys. 24 (2022) 023015 G H Chen et al

Figure 2. (a) Plasmon dispersion relation kSPP/k1 for a symmetric silver-vacuum cavity (solid curve), as a function of mirror
separation d. Note that as the distance between the interfaces increases, the SPP wavevector approaches the value for a single
interface (kSPP ≈ 1.019k1, dashed line). (b) Normalized Γ/Γ0 emission rate for in-plane and out-of-plane point dipoles as a
function of distance z0 from a single silver interface. The emission rate for an extended exciton with an in-plane dipole transition
at T = 0 is also included. (c) Normalized emission rate for in-plane and out-of-plane point dipoles in a symmetric silver cavity
versus mirror separation d, as well as the emission rate for an in-plane extended exciton at T = 0.

3.2. Momentum-resolved emission rate of exciton
In this section, we present results for the momentum-resolved emission rate of an extended exciton for the
single interface and cavity structures. Figure 3(a) shows the normalized emission rate Γ(Q , z0)/Γ0(Q = 0)
for a single interface as a function of the center-of-mass momentum Q and the distance z0 from the surface
for an in-plane transition as given by equation (26). In figure 3(b), we plot an analogous quantity
Γ(Q , z0)/Γ0(Q = k1/

√
2) for the out-of-plane case, equation (27). Here, we have chosen the (arbitrary)

normalization of an exciton in a uniform medium with momentum Q = k1/
√

2, as Q = 0 yields a zero
emission rate. In both the in-plane and out-of-plane cases, the emission rate for a fixed momentum in the
radiative region (Q < k1) is oscillatory as the exciton position z0 is varied, much like the oscillations seen in
the point dipole case. We note, however, that for the extended exciton, the visibility of the oscillations does
not decrease with increasing z0. In the non-radiative region (Q > k1), one observes an emission into SPP’s
when Q = kSPP, and lossy emission for other Q , provided that the exciton is close enough to couple
evanescently, z0 ! 1/|Q z|.

One particular limit is the case of zero motional temperature, Q = 0. In figure 2(b), we compare the
normalized emission Γ(Q = 0, z0)/Γ0(Q = 0) for an in-plane transition of an extended exciton at zero
temperature with that Γ(z0)/Γ0 of a point dipole. The extended exciton curve is notably different in its
undamped oscillations with z0, and the absence of a near-field non-radiative emission for small z0. This is
because the non-radiative emission comes from the contribution of evanescent waves, which have momenta

8
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Figure 3. Normalized emission rates as a function of center-of-mass momentum Q /k1 and distance between exciton and
interface z0 (or mirror separation d for cavity case). (a) Γ(Q , z0)/Γ0(Q = 0) for a single interface, and in-plane circularly
polarized planar dipole. (b) Γ(Q , z0)/Γ0(Q = k1/

√
2) for a single interface, and out-of-plane polarized planar dipole. (c)

Γ(Q , d)/Γ0(Q = 0) for a cavity and in-plane circularly polarized planar dipole. (d) Γ(Q , d)/Γ0(Q = k1/
√

2) for a cavity and
out-of-plane polarized planar dipole.

Q > k1, the wave vector of a radiative photon in medium 1. Thus, at T = 0, an extended exciton with only
Q = 0 has no non-radiative emission. In the out-of-plane case, the extended exciton has a zero-temperature
emission rate Γ(Q = 0, z0) = 0, unlike the point dipole case, as seen from equation (25) for Q = 0.
Physically, an oscillating, spatially uniform (Q = 0) planar current density must emit electromagnetic
radiation in a direction orthogonal to the plane, with a resulting electric field polarization that is parallel to
the plane. As there can be no preferred direction of this polarization due to rotational symmetry, the field
and thus the emission rate must be zero.

In figures 3(c) and (d), we repeat the calculations of the momentum and distance dependent emission
rates, Γ(Q , d)/Γ0(Q = 0) and Γ(Q , d)/Γ0(Q = k1/

√
2), for in-plane and out-of-plane transitions,

respectively, this time for the cavity geometry. Now in the radiative region Q < k1, the emission is sharply
enhanced for cavity separation distances d that yield resonances at the exciton emission frequency. These
resonance conditions are determined by the poles of the terms in equations (28) and (29). In the case of a
nearly perfect conductor ϵs →−∞, the resonance condition at normal incidence Q = 0 would occur at
d/λ = m + 1/2 for non-negative integer m. The splitting of the resonance condition for Q ̸= 0, observed in
the in-plane case, arises due to the slight phase difference between the s- and p-reflection coefficients for the
finite permittivity of silver. Similar to the single interface, the emission rate is periodic in d, but now with a
Purcell-enhanced maximum on resonance that scales with the cavity finesse, ∼1/(1 − |r|2). For Q > k1, the
out-of-plane transition also exhibits a sharp feature following the SPP dispersion relation given in
equation (33), Q ≈ kSPP, while the in-plane transition does not couple to SPP’s for the symmetric geometry
considered here.

9
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4. Temperature dependent emission rates

Next, we consider how the temperature dependence of the exciton momentum distribution impacts our
results for emission rates. The distribution can in principle be quite complex, and governed by the interplay
of various complex microscopic mechanisms, including radiative and non-radiative recombination rates
and thermalization due to scattering with phonons and other excitons [35–40]. At sufficiently high
densities, there can also be exciton–exciton annihilation processes [41]. In general, each of these processes
would require their own microscopic modeling, which goes beyond the scope of our work.

Instead, to elucidate some of the qualitative physics that is possible, we take a minimal model, assuming
that the momentum is always in a non-interacting BE thermal equilibrium distribution. In the presence of
emission that itself is momentum-dependent, this model essentially assumes then that the distribution
always re-equilibrates on time scales that can be considered instantaneous compared to the emission time.
In TMDCs, thermalization occurs on a timescale of picoseconds—therefore, the assumption of
thermalization is valid for excitons with lifetimes significantly exceeding this timescale [35]. Note that our
model allows for the possibility of condensed phases. In this case, our model is valid for exciton systems
with low oscillator strength, such as interlayer excitons in van der Waals heterostructures, where it is
possible to have a high condensed density and avoid strong exciton–exciton annihilation. We note that these
interlayer excitons have the same selection rules as 2D TMDCs and have been demonstrated to be 99 ± 1%
in-plane [18], corresponding to our in-plane calculations and results.

Within our model, the BE distribution for the momentum is given by:

fBE(ϵ) =
1

e(ϵ(Q )−µ)/kBT − 1
(35)

where ϵ(Q ) is the exciton dispersion and µ is the chemical potential, related to the density of particles n by

µ = kBT ln
(

1 − e−nλ2
dB

)
. (36)

While excitons may exhibit a variety of interesting phenomena resulting in a modified dispersion, such as a
Dirac dispersion [42–44], we consider the case of a quadratic dispersion relation, ϵ(Q ) = (!Q )2

2m (m is the
exciton mass).

The transition between quantum and classical statistics is governed by the dimensionless phase space
density nλ2

dB, where λdB = h√
2πmkBT

is the thermal de Broglie wavelength. When nλ2
dB " 1, the quantum

statistics become significant. In particular, the excitons can enter a condensed phase, as theoretically
predicted in reference [4] and experimentally observed in reference [5]. The condensate phase results in
strongly modified emission properties, much like that of a T = 0 gas. On the other hand, for nλ2

dB ≪ 1, the
BE distribution approaches the classical MB formula with a (per-particle) distribution of,

fMB(ϵ) =
!2

2πmkBT
e−ϵ(Q )/kBT . (37)

Under the above assumptions, the average spontaneous emission rate ⟨Γ⟩ at a given density and
temperature is given by

⟨Γ⟩ =

∫
Γ(Q)fBE(Q)d2Q∫

fBE(Q)d2Q
. (38)

One convenient and experimentally meaningful way to normalize this quantity is to divide it by the average
emission rate at the same temperature and particle density n, but in free space, which we denote by ⟨Γ0⟩.
Note that for non-zero temperature, ⟨Γ0⟩ is non-zero for both in-plane and out-of-plane dipoles, and thus
this normalization can be equally applied to each case.

5. Results: temperature dependence at a single interface

5.1. In-plane polarization
Here, we study the radiative emission of thermalized in-plane polarized excitons near a single metal
interface using the same material parameters as in section 3. We take the exciton mass to be m = me + mh

where me = 0.49m0 and mh = 0.52m0 for MoSe2 are obtained from DFT calculations (m0 is the electron
mass) [45, 46]. For the MB distribution (equation (37)), we use the Q -dependent emission rates given in
equations (24) and (26) to calculate the normalized, average emission rate, ⟨Γ⟩/⟨Γ0⟩, for the in-plane,
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Figure 4. (a) and (b) Temperature (MB and BE distributions respectively) and distance dependence of the normalized in-plane
exciton emission rate, ⟨Γ⟩/⟨Γ0⟩ near a single interface. At the top of (a), we provide the temperature normalized by Tc, while at
the top of (b), we provide the temperature in terms of the product of particle density and de Broglie wavelength, nλ2

dB. (c)
Temperature linecuts comparing the plane-dipole emission rate (MB distribution) at various temperatures to the point-dipole
model. (d) Comparison of emission rates using the MB and BE momentum distributions at various temperatures. (e) Emission
rate with varying total densities n and temperature T at a fixed distance, z0 = 0.011λ (colorbar uses a logarithmic scale). The
contour lines denote the values of nλ2

dB.

circularly polarized plane dipole at non-zero temperatures. We plot the thermally averaged emission rate as
a function of temperature and distance z0, in figure 4(a) and provide the corresponding value of T/Tc on
the upper axis. The characteristic energy scale defined by kBTc = (!k1)2/2m corresponds to when the
exciton has the same momentum as the radiative photon (Tc ∼30 mK for our parameters). We find that for
z0 > 0.5λ, the emission rates for different temperatures behave similarly, oscillating interferometrically as a
function of z0 with a visibility that increases for T ! Tc. However, at small distances, when the 2D TMDC is
placed close to the metal interface (z0 < 0.03λ), the differences in their temperature dependence become
apparent. This is evident in figure 4(c), where we plot the emission rate as a function of z0 for various
temperatures. Interestingly, as the temperature of the system increases, the functional form of ⟨Γ⟩/⟨Γ0⟩
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Figure 5. (a) and (b) Temperature (MB and BE distributions respectively) and distance dependence of the normalized
out-of-plane exciton emission rate, ⟨Γ⟩/⟨Γ0⟩ near a single interface. (c) Temperature linecuts comparing the plane-dipole
emission rate (MB distribution) at various temperatures to the point-dipole model.

approaches that of a point dipole, Γ(z0)/Γ0, as given by equation (14) and plotted with the dashed black
curve. At sufficiently low temperatures (T ∼Tc), the exciton momentum distribution contains a negligible
contribution from non-radiative components Q > k1, which results in a significant suppression of
non-radiative emission at short distances, as compared to the high temperature and point-dipole cases
where non-radiative emission is dominant.

We now calculate the average emission rate associated with a BE distribution, using equations (24), (26)
and (38). Here, we choose a fixed total density of n = 1012 cm−2 typical of interlayer exciton systems [4]
and use the same exciton mass m as before. In figure 4(b), we plot the emission rate ⟨Γ⟩/⟨Γ0⟩ as a function
of distance z0 and temperature T. For convenience, we also indicate the corresponding value of nλ2

dB on the
upper x-axis. In particular, one sees that a qualitative change in behavior occurs around nλ2

dB ∼1, with
values nλ2

dB ! 1 approaching the MB emission properties discussed earlier. On the other hand, for values
nλ2

dB " 1, bosonic enhancement of low-energy (Q ∼0) states yields more prominent oscillations in the
emission at large distances z0, reminiscent of that of a planar dipole with center-of-mass momentum Q = 0
(see figure 3(a)). This similarity can be better seen in figure 4(d), where we plot ⟨Γ⟩/⟨Γ0⟩ as a function of
distance, for several different temperatures. In particular, we compare the results obtained from the MB and
BE distributions (red and blue curves, respectively), with the emission calculated at T = 0 (black curve). It
is seen that for nλ2

dB ≫ 1, the BE curve essentially approaches the T = 0 result, even though the
temperature T ≫ Tc is still much larger than that to narrow the single-particle MB momentum distribution
to only radiative components. Conversely, for nλ2

dB ≪ 1, the emission curves for the MB and BE
distributions coincide. Finally, in figure 4(e), we plot the emission rate ⟨Γ⟩/⟨Γ0⟩ obtained by the BE
distribution, as a function of temperature T and total density n, for a fixed distance of z0 = 0.011λ nm. The
dashed contours indicate the values of nλ2

dB. The transition around nλ2
dB ∼1 from the MB result to

essentially the T = 0 result (for nλ2
dB ≫ 1) is also evident here.

5.2. Out-of-plane polarization
We can repeat the calculations of the previous subsection, but now for an out-of-plane transition. In
particular, in figure 5(a), we plot the normalized average emission rate ⟨Γ⟩/⟨Γ0⟩ as a function of distance
and temperature, assuming an MB distribution, while in figure 5(c), we provide line cuts showing the
distance dependence for several specific temperatures. In figure 5(c), we also plot the normalized emission
rate Γ(z0)/Γ0 for a point dipole (dashed black curve). Just as in the case of an in-plane transition, the
out-of-plane transition results converge to the point dipole one at sufficiently large temperatures and
distances. Also as before, for small distances and low temperature, suppression of non-radiative emission is
responsible for the divergence of the planar and point dipole results from one another.

In figure 5(b), we plot the average emission rate versus distance and temperature for the BE distribution,
taking the same total density n = 1012 cm−2 as in section 5.1. Again, one observes a qualitative transition in
behavior around nλ2

dB ∼1.

6. Results: temperature dependence in a metal cavity

6.1. In-plane polarization
We now use equations (24), (28) and (38) to calculate the normalized average emission rate for the cavity
configuration. In figures 6(a) and (b), we plot the temperature and distance (d) dependent rates for the MB
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Figure 6. (a) and (b) Temperature (MB and BE distributions respectively) and distance dependence of the normalized in-plane
exciton emission rate, ⟨Γ⟩/⟨Γ0⟩ in a symmetric silver cavity. At the top of (a), we provide the temperature normalized by Tc,
while at the top of (b), we provide the temperature in terms of the product of particle density and de Broglie wavelength, nλ2

dB.
(c) Temperature linecuts comparing the plane-dipole emission rate (MB distribution) at various temperatures to the
point-dipole model. (d) Comparison of emission rates using the MB and BE momentum distributions at T = 5 K, and the
comparison to the T = 0 result. The left and right panels show the behavior for small and large cavity separations d, respectively.
(e) and (f) BE emission rate versus temperature and particle density, for a small and large cavity separation, d = 0.011λ and
d = 0.439λ, respectively (colorbar is on a logarithmic scale). The contour lines indicate values of nλ2

dB.

and BE distributions, respectively. In the latter case, we again take a total density n = 1012 cm−2. In
figure 6(c), we plot linecuts of the MB results at select temperatures at small distances (left), and at larger
distances (right), where the latter shows the strong sawtooth shaped Purcell enhancement associated with
the cavity. Similar to the single-interface case, we find that as the temperature increases, the plane-dipole
model begins to behave like the point dipole model (dashed black curves of figure 6(c)) as the high-Q states
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Figure 7. (a) and (b) Temperature (MB and BE distributions respectively) and distance dependence of the normalized
out-of-plane exciton emission rate, ⟨Γ⟩/⟨Γ0⟩ in a symmetric silver cavity. (c) Temperature linecuts comparing the plane-dipole
emission rate (MB distribution) at various temperatures to the point-dipole model.

that contribute to non-radiative emission become populated. For T # 5 K, we find that the minimum
emission rate is ⟨Γ⟩/⟨Γ0⟩ ≈ 0.01 for a cavity separation of d ∼0.27λ and is sharply enhanced for smaller
separations, d < 0.27λ, due to non-radiative decay. In comparison, this non-radiative decay becomes
negligible at short distances once T ∼Tc. In the Purcell-enhanced region, it can be seen that low
temperatures T ! Tc can result in a greater level of spontaneous emission enhancement, as one would
expect as the Q distribution narrows toward Q = 0 (compare with figure 3(c) at Q = 0).

For BE distributions with nλ2
dB " 1, bosonic enhancement allows for the normalized emission rate to

come close to the T = 0 case, similar to what was observed at a single interface. This is evident in
figure 6(d), where we plot the distance-dependent emission rates at a fixed temperature of T = 5 K
(nλ2

dB = 11.01), using the MB and BE distributions (red and blue, respectively), and also the T = 0 result
(black dashed). Notably, for example, a maximum Purcell enhancement of ⟨Γ⟩/⟨Γ0⟩ ∼102, as allowed for
T = 0, is also observed for the BE distribution. In figures 6(e) and (f), we now consider the emission rate
versus temperature and total density, at a close distance of d = 0.011λ and large distance of d = 0.439λ,
respectively. The transition from MB to BE behavior around nλ2

dB ∼1 is evident. Notably, at the distance of
d = 0.439λ, Purcell enhancements on the order of ∼102 are observed when nλ2

dB ≫ 1.
An important caveat to these discussions of orders of magnitude of enhancement is the possibility of

strong coupling between the excitons and the metal cavity, in which case the calculations are no longer
valid. For a metal cavity with ∼5 THz linewidth, interlayer excitons with emission rates in the 10–100 MHz
regime would remain weakly coupled even with the ∼100 times Purcell enhancement shown in figure 6(d)
[3]. However, for individual monolayers where excitons can have THz radiative decay rates, the system
would enter the strong coupling regime and the calculations are no longer valid [46].

6.2. Out-of-plane polarization
We now consider an out-of-plane transition in the cavity structure. Figure 7(a) plots the emission rate
dependence on temperature and cavity separation d for the MB distribution. At low temperatures and small
separations d, the large non-radiative emission present at high temperatures becomes significantly
suppressed. Figure 7(b) shows the emission rate calculated using the BE distribution. As before, a large
phase space density allows the behavior associated with the MB distribution and low temperatures T < Tc

to be observed at much higher temperatures. Figure 7(c) plots linecuts of the emission rate for the MB
distribution at select temperatures. We find that at T = Tc, the non-radiative emission is suppressed by
several orders of magnitude compared to higher temperatures and does not monotonically grow as d → 0,
unlike the point dipole case.

7. Conclusion

We have elucidated the remarkably different emission behavior that extended excitons can have in common
geometries such as a single metallic interface or a metallic cavity, as compared to the better known behavior
of a point-like quantum emitter. By taking into account the thermal distribution of exciton momentum, we
found that at low temperatures, the non-radiative emission at short distances associated with Ohmic losses
can be significantly reduced. The emission behavior of thermalized excitons begins to approximate that of
point dipoles as the temperature increases. These strong differences between point-like and planar dipole
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emission will be particularly relevant for those studying excitonic systems in 2D TMDCs at cryogenic
temperatures. Furthermore, we have shown how these differences are exaggerated when considering a BE
distribution of the exciton center-of-mass momentum at high phase space densities nλ2

dB " 1 where the
exciton gas approaches a condensed phase.

Our simple model was quite specific, focusing on a non-interacting exciton gas with quadratic
dispersion, whose momentum distribution always corresponds to a BE distribution. However, we anticipate
that our model can also be extended to cover a wide variety of interesting phenomena. In cases where the
exciton dispersion includes a linear term [42–44], the temperature dependent calculations may be carried
out with a dispersion relation ϵ(Q ) ∼Q following our provided formalism. The principles underlying our
model might also be combined with more microscopic models of exciton dynamics, which account for
additional phenomena such as exciton–exciton interactions. Together, these insights might enable novel
opportunities in optoelectronic systems and devices based on manipulating TMDC exciton emission.
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[10] High A A, Leonard J R, Hammack A T, Fogler M M, Butov L V, Kavokin A V, Campman K L and Gossard A C 2012 Nature 483
584–8

[11] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A and Rempe G 2007 Nat. Phys. 3 253–5
[12] Santori C, Fattal D, Vuckovic J, Solomon G S and Yamamoto Y 2004 New J. Phys. 6 89
[13] Barros H G, Stute A, Northup T E, Russo C, Schmidt P O and Blatt R 2009 New J. Phys. 11 103004
[14] Kuhn A, Hennrich M and Rempe G 2002 Phys. Rev. Lett. 89 067901
[15] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[16] Etchegoin P G and Le Ru E C 2008 Phys. Chem. Chem. Phys. 10 6079–89
[17] Jiang Y, Chen S, Zheng W, Zheng B and Pan A 2021 Light Sci. Appl. 10 72
[18] Sigl L et al 2021 arXiv:2111.01886
[19] Zhou Y et al 2017 Nat. Nanotechnol. 12 856–60
[20] Chance R, Prock A and Silbey R 1978 Molecular Fluorescence and Energy Transfer Near Interfaces (Advances in Chemical Physics

vol 37) ed I Prigogine and S Rice (New York: Wiley) pp 1–65
[21] Echeverry J P, Urbaszek B, Amand T, Marie X and Gerber I C 2016 Phys. Rev. B 93 121107
[22] Chaves A et al 2020 npj 2D Mater. Appl. 4 29
[23] Drexhage K H 1970 J. Lumin. 1–2 693–701
[24] Dutra S M and Knight P L 1996 Phys. Rev. A 53 3587

15

doi:10.5281/zenodo.5562968
https://orcid.org/0000-0002-6921-4344
https://orcid.org/0000-0002-6921-4344
https://orcid.org/0000-0002-9441-1606
https://orcid.org/0000-0002-9441-1606
https://doi.org/10.1038/nphoton.2015.282
https://doi.org/10.1038/nphoton.2015.282
https://doi.org/10.1038/nphoton.2015.282
https://doi.org/10.1038/nphoton.2015.282
https://doi.org/10.1126/science.1157845
https://doi.org/10.1126/science.1157845
https://doi.org/10.1126/science.366.6467.901
https://doi.org/10.1126/science.366.6467.901
https://doi.org/10.1038/ncomms5555
https://doi.org/10.1038/ncomms5555
https://doi.org/10.1038/s41586-019-1591-7
https://doi.org/10.1038/s41586-019-1591-7
https://doi.org/10.1038/s41586-019-1591-7
https://doi.org/10.1038/s41586-019-1591-7
https://doi.org/10.1103/PhysRevA.96.031801
https://doi.org/10.1103/PhysRevA.96.031801
https://doi.org/10.1103/physrevresearch.2.012029
https://doi.org/10.1103/physrevresearch.2.012029
https://doi.org/10.1103/PhysRevLett.120.037402
https://doi.org/10.1103/PhysRevLett.120.037402
https://doi.org/10.1103/physrevlett.120.037401
https://doi.org/10.1103/physrevlett.120.037401
https://doi.org/10.1038/nature10903
https://doi.org/10.1038/nature10903
https://doi.org/10.1038/nature10903
https://doi.org/10.1038/nature10903
https://doi.org/10.1038/nphys569
https://doi.org/10.1038/nphys569
https://doi.org/10.1038/nphys569
https://doi.org/10.1038/nphys569
https://doi.org/10.1088/1367-2630/6/1/089
https://doi.org/10.1088/1367-2630/6/1/089
https://doi.org/10.1088/1367-2630/11/10/103004
https://doi.org/10.1088/1367-2630/11/10/103004
https://doi.org/10.1103/physrevlett.89.067901
https://doi.org/10.1103/physrevlett.89.067901
https://doi.org/10.1103/physrevlett.78.1667
https://doi.org/10.1103/physrevlett.78.1667
https://doi.org/10.1039/b809196j
https://doi.org/10.1039/b809196j
https://doi.org/10.1039/b809196j
https://doi.org/10.1039/b809196j
https://doi.org/10.1038/s41377-021-00500-1
https://doi.org/10.1038/s41377-021-00500-1
https://arxiv.org/abs/2111.01886
https://doi.org/10.1038/nnano.2017.106
https://doi.org/10.1038/nnano.2017.106
https://doi.org/10.1038/nnano.2017.106
https://doi.org/10.1038/nnano.2017.106
https://doi.org/10.1103/physrevb.93.121107
https://doi.org/10.1103/physrevb.93.121107
https://doi.org/10.1038/s41699-020-00162-4
https://doi.org/10.1038/s41699-020-00162-4
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1016/0022-2313(70)90082-7
https://doi.org/10.1103/physreva.53.3587
https://doi.org/10.1103/physreva.53.3587


New J. Phys. 24 (2022) 023015 G H Chen et al

[25] Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449–58
[26] Fan S, Villeneuve P R, Joannopoulos J D and Schubert E F 1997 Phys. Rev. Lett. 78 3294
[27] Fujita M, Takahashi S, Tanaka Y, Asano T and Noda S 2005 Science 308 1296–8
[28] Agarwal G S 1975 Phys. Rev. A 12 1475
[29] Novotny L and Hecht B 2006 Principles of Nano-Optics (Cambridge: Cambridge University Press)
[30] Agarwal G S 1998 J. Mod. Opt. 45 449
[31] Born M and Wolf E 1970 Principles of Optics 6th edn (Oxford: Pergamon)
[32] Wang H, Zhang C, Chan W, Manolatou C, Tiwari S and Rana F 2016 Phys. Rev. B 93 045407
[33] High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D and Park H 2015 Nature 522 192–6
[34] Heinz R 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Tracts in Modern Physics vol 111) (New

York: Springer)
[35] Selig M, Berghäuser G, Richter M, Bratschitsch R, Knorr A and Malic E 2018 2D Mater. 5 035017
[36] Umlauff M et al 1998 Phys. Rev. B 57 1390
[37] Ivanov A L, Littlewood P B and Haug H 1999 Phys. Rev. B 59 5032–48
[38] Mueller T and Malic E 2018 npj 2D Mater. Appl. 2 29
[39] Cui Q, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
[40] Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Nanoscale 6 4915
[41] Yuan L, Wang T, Zhu T, Zhou M and Huang L 2017 J. Phys. Chem. Lett. 8 3371–9
[42] Yu H, Liu G-B, Gong P, Xu X and Yao W 2014 Nat. Commun. 5 3876
[43] Wu F, Qu F and MacDonald A H 2015 Phys. Rev. B 91 075310
[44] Qiu D Y, Cao T and Louie S G 2015 Phys. Rev. Lett. 115 176801
[45] Wang G, Gerber I C, Bouet L, Lagarde D, Balocchi A, Vidal M, Amand T, Marie X and Urbaszek B 2015 2D Mater. 2 045005
[46] Robert C et al 2016 Phys. Rev. B 93 205423

16

https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1103/physrevlett.78.3294
https://doi.org/10.1103/physrevlett.78.3294
https://doi.org/10.1126/science.1110417
https://doi.org/10.1126/science.1110417
https://doi.org/10.1126/science.1110417
https://doi.org/10.1126/science.1110417
https://doi.org/10.1103/physreva.12.1475
https://doi.org/10.1103/physreva.12.1475
https://doi.org/10.1080/09500349808231908
https://doi.org/10.1080/09500349808231908
https://doi.org/10.1103/physrevb.93.045407
https://doi.org/10.1103/physrevb.93.045407
https://doi.org/10.1038/nature14477
https://doi.org/10.1038/nature14477
https://doi.org/10.1038/nature14477
https://doi.org/10.1038/nature14477
https://doi.org/10.1088/2053-1583/aabea3
https://doi.org/10.1088/2053-1583/aabea3
https://doi.org/10.1103/physrevb.57.1390
https://doi.org/10.1103/physrevb.57.1390
https://doi.org/10.1103/physrevb.59.5032
https://doi.org/10.1103/physrevb.59.5032
https://doi.org/10.1103/physrevb.59.5032
https://doi.org/10.1103/physrevb.59.5032
https://doi.org/10.1038/s41699-018-0074-2
https://doi.org/10.1038/s41699-018-0074-2
https://doi.org/10.1021/nn500277y
https://doi.org/10.1021/nn500277y
https://doi.org/10.1039/c3nr06863c
https://doi.org/10.1039/c3nr06863c
https://doi.org/10.1021/acs.jpclett.7b00885
https://doi.org/10.1021/acs.jpclett.7b00885
https://doi.org/10.1021/acs.jpclett.7b00885
https://doi.org/10.1021/acs.jpclett.7b00885
https://doi.org/10.1038/ncomms4876
https://doi.org/10.1038/ncomms4876
https://doi.org/10.1103/PhysRevB.91.075310
https://doi.org/10.1103/PhysRevB.91.075310
https://doi.org/10.1103/physrevlett.115.176801
https://doi.org/10.1103/physrevlett.115.176801
https://doi.org/10.1088/2053-1583/2/4/045005
https://doi.org/10.1088/2053-1583/2/4/045005
https://doi.org/10.1103/PhysRevB.93.205423
https://doi.org/10.1103/PhysRevB.93.205423

	Engineering the radiative dynamics of thermalized excitons with metal interfaces
	1.  Introduction
	2.  Theoretical formalism
	2.1.  Point-dipole emission rates
	2.2.  Plane-dipole emission rates

	3.  Results: modified emission by silver interface and cavity
	3.1.  Point dipole
	3.2.  Momentum-resolved emission rate of exciton

	4.  Temperature dependent emission rates
	5.  Results: temperature dependence at a single interface
	5.1.  In-plane polarization
	5.2.  Out-of-plane polarization

	6.  Results: temperature dependence in a metal cavity
	6.1.  In-plane polarization
	6.2.  Out-of-plane polarization

	7.  Conclusion
	Data availability statement
	Acknowledgments
	ORCID iDs
	References


