All-optical excitonic transistor

Y. Y. Kuznetsova, M. Remeika, A. A. High, A. T. Hammack, L. V. Butov, M. Hanson, and A. C. Gossard

1Department of Physics, University of California at San Diego, La Jolla, California 92093-0319, USA
2Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106-5050, USA
3Corresponding author: yuliyakuzn@gmail.com

Received December 21, 2009; revised March 19, 2010; accepted March 26, 2010; posted April 6, 2010 (Doc. ID 121718); published May 5, 2010

We demonstrate experimental proof of principle for all-optical excitonic transistors where light controls light by using excitons as an intermediate medium. The principle of operation of all-optical excitonic transistors is based on the control of exciton fluxes by light. © 2010 Optical Society of America

OCIS codes: 200.3050, 230.1150, 230.3120, 250.3140

Switches form the building blocks for circuit devices, and the development of optical and optoelectronic switches has been a subject of intensive research, see [1,2] for reviews. Recently, fast photonic switches have been realized [3–11]. Excitonic switches, i.e., switches using excitons—bound electron–hole pairs—as the operation medium, may offer a promising energy-efficient alternative to electrons in wires for future circuitry [12]. Potential advantages of excitonic devices include a high operation and interconnection speed, small dimensions, and the opportunity to combine many elements into integrated circuits [12–15]. Recently, a proof-of-principle demonstration of an exciton optoelectronic devices was reported [13–15]. The principle of operation of exciton optoelectronic devices is based on the control of exciton fluxes by electrode voltages.

The excitonic devices in [13–15] used indirect excitons as the operation medium. An indirect exciton is composed of an electron and a hole confined in spatially separated layers (Fig. 1a). The lifetime of indirect excitons exceeds by orders of magnitude the lifetime of regular excitons and increases exponentially with the separation between the layers and the height of the separating barrier. Within their lifetime, indirect excitons can travel over large distances [16–22], for which devices can be patterned. Furthermore, indirect excitons have a built-in dipole moment. Therefore, an electric field \(E\) perpendicular to the quantum well (QW) plane results in the exciton energy shift \(\delta E = e d F_z\) [23]. This gives an opportunity to control the energy of indirect excitons by an electrode voltage.

Here, we present an all-optical excitonic transistor. In this device, all applied voltages are kept constant, and the exciton flux from source to drain is controlled optically by varying the light intensity at a photoconnector (PC) between two electrodes, which form an optically controlled gate.

A schematic of the transistor is shown in Figs. 1b and 1c. This proof-of-principle all-optical excitonic transistor has a photonic input, output, and control gate and uses indirect excitons as the operation medium. Photons transform into excitons at the input and travel from the input (source) to the output (drain) because of the potential energy change \(\delta E \sim ed (F_{zd} - F_{zs}) \times (V_d - V_s)\) created by the source voltage \(V_s\) and drain voltage \(V_d\) (Figs. 1b–1d). The exciton flux from source to drain is controlled by a light beam at a PC, which creates (removes) a barrier for the excitons in the region of the gate electrode when the transistor is off (on). Such optical control is implemented via varying the conductance of the PC and, as a result, voltage \(V_g\) in region \(g\) where the gate electrode crosses the exciton flux.

In two demonstrated devices, the PC was implemented in the form of a metal–semiconductor–metal photodetector with thirteen 10-\(\mu\)m-long, 0.6-\(\mu\)m-wide electrodes separated by 0.3 \(\mu\)m (Fig. 1e). The PC connected a split gate \(g_1\)–\(g_2\). The electrode on the side opposite the PC was implemented in the form of a folded 2.4-mm-long, 0.5-\(\mu\)m-wide ribbon for device \(a\) and a folded 150-\(\mu\)m-long, 1-\(\mu\)m-wide ribbon for device \(b\) (Fig. 1e). Electrodes \(s\) and \(d\) were implemented in the form of 10 \(\mu\)m wide strips. The width of electrode \(g\) was 1 \(\mu\)m. The spacings between electrode \(g\) and electrodes \(s\) and \(d\) were 1 \(\mu\)m (Fig. 1e).

![Fig. 1. (Color online) Principle of operation of the all-optical excitonic transistor. a, CQW diagram. b, c, Design schematic of the all-optical excitonic transistor. s, source; d, drain; g1–g2, split gate connected by a photoconnector (PC). The gate electrode crosses the exciton flux in region g. d, Schematic of the exciton potential energy. The exciton flux from source to drain is controlled by a light beam at the PC, which varies a barrier for the excitons in the region of the gate electrode. e, Top view of device b.](https://example.com/f1.png)

0146-9592/10/101587-3/$15.00 © 2010 Optical Society of America
excitons were photocrreated at the source \(s \) by a 690 nm diode laser within a 5 \(\mu m \) FWHM spot. The PC was controlled by either a 633 nm HeNe laser or a 786 nm diode laser focused to a 7 \(\mu m \) FWHM spot on the PC. \(\lambda_{PC}=786 \) nm corresponds to the energy of direct excitons in the structure. A direct exciton is composed of an electron and a hole in the same layer (Fig. 1a) and is characterized by a high oscillator strength. The experiments were done at 1.6 K. The structure was grown by molecular beam epitaxy. An \(n^-\text{GaAs} \) layer with \(n_{Si}=10^{18} \) cm\(^{-3} \) serves as a homogenous bottom electrode. The top electrodes were fabricated by depositing a 100 nm semitransparent layer of indium tin oxide. A pair of 8 nm \(\text{GaAs} \) quantum wells separated by a 4 nm \(\text{Al}_{0.33}\text{Ga}_{0.67}\text{As} \) barrier was positioned 0.1 \(\mu m \) above the \(n^-\text{GaAs} \) layer within an undoped 1-\(\mu m \)-thick \(\text{Al}_{0.33}\text{Ga}_{0.67}\text{As} \) layer. Positioning the coupled quantum wells (CQWs) closer to the homogenous electrode suppresses the in-plane electric field [24], which otherwise can lead to exciton dissociation. The emission images were taken by a CCD with an interference filter covering the spectral range of the indirect excitons emitting in the vicinity of 800 nm. The spatial resolution was 1.5 \(\mu m \).

Figure 2 presents images of the transistor emission and the corresponding emission intensity along the exciton flux in on and off states. When the light beam at the PC is off (Figs. 2a and 2c), the barrier at the gate electrode is essentially absent, and excitons can flow from source to drain: The transistor is on. The light beam at the PC creates a barrier for the exciton flux from source to drain at the gate (Figs. 2b and 2c); the transistor is off.

Figure 3 shows the emission intensity of indirect excitons integrated over output (drain) for various \(V_{g2} \) and, in turn, voltage difference \(\Delta V=V_{g1}-V_{g2} \) at the split gate, for the gate control by a light on the PC with the wavelength \(\lambda_{PC}=633 \) (Fig. 3a) and 786 nm (Fig. 3b). For \(\lambda_{PC}=633 \) nm, the transistor works both for zero and nonzero \(\Delta V \). However, increasing the voltage on \(g2 \), and, in turn \(\Delta V \), results in a steeper change between on and off and a higher on–off ratio (Fig. 3a). The on–off ratio of the signal integrated over the output (taken as the ratio of the signal when the laser at the PC is off to intensity when the laser at the PC is at 30 \(\mu W \)) is 8.5 for \(V_{g2}=-5.0 \) V, 9.5 for \(V_{g2}=-2.5 \) V, and 16.4 for \(V_{g2}=0 \) V for the device. The maximal electric currents through the device reach \(\sim 10 \mu A \) under the illumination with \(\lambda_{PC}=633 \) nm so that the power dissipation reaches \(\sim 100 \mu W \).

For \(\lambda_{PC}=786 \) nm, the transistor works for nonzero \(\Delta V \) (Fig. 3b). The on–off ratio of the signal integrated over the output (taken as the ratio of the signal when the laser at the PC is off to intensity when the laser at the PC is at 180 \(\mu W \)) is 12 for \(V_{g2}=0 \) V for the device. The maximal electric currents through the device reach \(\sim 1 \mu A \) under the illumination with \(\lambda_{PC}=786 \) nm; so the power dissipation reaches \(\sim 10 \mu W \).

The data are briefly discussed below. We first consider the variation of voltage \(V_g \) in region \(g \) due to the light-induced change of the PC resistance \(R_{PC} \), which is defined as the resistance between \(g \) and \(g2 \) (Figs. 1c and 1e). In the absence of light on the PC, \(R_{PC} \) exceeds the resistance \(R \) of the electrode between \(g1 \) and \(g \), \(R_{PC}>>R \) so that \(g \) is essentially disconnected from \(g2 \) and \(V_g=V_{g1} \). A light on the PC photogenerates electrons and holes in the structure, which reduces \(R_{PC} \), connecting \(g1 \) and \(g2 \) and shifting \(V_g \) toward \(V_{g2} \), so that \(V_g=V_{g2} \) for \(R_{PC}>>R \) to provide the on–off transistor operation, \(V_{g1} \) and \(V_{g2} \) were chosen such that making \(V_g=V_{g2} \) (\(V_g=V_{g1} \) creates (removes) a barrier for the excitons in region \(g \)); see Fig. 1d. This mechanism contributes to the transistor operation at nonzero \(\Delta V \).

Next we consider the variation of \(V_g \) due to the light-induced change of the resistance \(R_{PC-G} \) between the PC electrode on the top of the structure and the ground plane. In the absence of light on the PC, \(R_{PC-G}>>R \) and \(V_g=V_{g1} \), while shining a light on the
In conclusion, we have demonstrated experimental proof of principle for all-optical excitonic transistors based on the modulation of exciton flux by light.

This work is supported by ARO and NSF. We thank Cal(iii)² Nano3 staff for help with sample fabrication.

References